
Trusted Computing
Platform Alliance

(TCPA)

Main Specification
Version 1.0

Copyright © 2000 Compaq Computer Corporation, Hewlett-Packard Company, IBM Corporation,

Intel Corporation, Microsoft Corporation

All rights reserved.

DISCLAIMERS:

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION,
OR SAMPLE.

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.

COMPAQ, HP, IBM, INTEL, AND MICROSOFT, DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR
INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO THE USE OF THE INFORMATION IN
THIS SPECIFICATION AND TO THE IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION.
COMPAQ, HP, IBM, INTEL, AND MICROSOFT, DO NOT WARRANT OR REPRESENT THAT SUCH
IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

WITHOUT LIMITATION, COMPAQ, HP, IBM, INTEL, AND MICROSOFT DISCLAIM ALL LIABILITY FOR
COST OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF
USE, LOSS OF DATA OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL
DAMAGES, WHETHER UNDER CONTRACT, TORT, WARRANTY OR OTHERWISE, ARISING IN ANY
WAY OUT OF USE OR RELIANCE UPON THIS SPECIFICATION OR ANY INFORMATION HEREIN.

All product names are trademarks, registered trademarks, or service marks of their respective owners.

TCPA Main Specification Page i i

Version 1.0 25 January, 2001

Acknowledgement

TCPA wishes to thank members of the PKI, PC Specific and Conformance Workgroup who contributed
expertise and text to this document. Thanks must be given to the members of the TCPA Technical
Committee who were Michael Angelo, Boris Balacheff, Josh Benaloh, David Challener, Dhruv Desai,
Paul England, David Grawrock, Bob Meinschein, Manny Novoa, Graeme Proudler, Jim Ward and Monty
Wiseman.

David Chan

Technical Committee Chair

TCPA Main Specification Page i i i

Version 1.0 25 January, 2001

Change History

Version Date Description
0.44 July 2000 Voted by members as appropriate for public release

with modifications.

0.90 August 2000 First version released to public.

0.91 October 26, 2000 Remove chapters 1 & 2. Complete reformat

0.92 4 November, 2000 Added new chapter for structures, updated
functions to match IDL, editing changes.

1.0 RC1 28 November 2000 Incorporated comments cleaned up structures and
made ready for publication.

1.0 RC2 11 December 2000 Incorporated changes from reflector.
Added new change authorization command.

1.0 RC4 10 Jan 2001 Incorporated changes and fixed up IDL

1.0 RC5 11 Jan 2001 PKCS#1 changes

TCPA Main Specification Page v

Version 1.0 25 January, 2001

Table of Contents

1. Forward ...1
2. The Trusted Platform Subsystem...2

2.1 Introduction ...2
2.2 Roots of Trust ...2
2.3 Integrity Operations ...5

2.3.1 Storage of Integrity Metrics..5
2.3.2 Reporting of Integrity Metrics ...5

2.4 Use of Keys Associated with TPM Identities ..6
2.5 Cryptographic Operations ..7
2.6 Opting to use a TPM ..8

2.6.1 Enabling Ownership ..9
2.6.2 Activating a TPM ..9
2.6.3 Selected operations ..10

3. Protection...13
3.1 Introduction ...13
3.2 Threat ...13
3.3 Integrity...14
3.4 Privileged Access..14
3.5 Side effects...14

4. Structures and Defines ..15
4.1.1 Endness of Structures ...15
4.1.2 Byte Packing ..15

4.2 Defines ...16
4.2.1 Basic data types ...16
4.2.2 Helper redefinitions ...16
4.2.3 Vendor specific...17

4.3 Return codes...18
4.4 IDL ...20
4.5 TCPA_VERSION...21
4.6 TCPA_DIGEST...22
4.7 TCPA_NONCE ..23
4.8 TCPA_AUTHDATA ..24
4.9 TCPA_PAYLOAD_TYPE ...24
4.10 TCPA_INTERNAL_HDR...25
4.11 TCPA_PUBKEY...26

4.11.1 TCPA_RSA_PUBKEY...26
4.12 TCPA_PRIVKEY..27
4.13 TCPA_KEY ...28
4.14 TCPA_PCR_REGISTER..29
4.15 TCPA_PCR_EVENT..30
4.16 TCPA_AUDIT_EVENT structure ...32
4.17 Storage Structures ...33

4.17.1 TCPA_SEALED_DA TA ...33
4.17.2 TCPA_PCR_SELECTION ...35
4.17.3 TCPA_PCR_COMPOSITE ..36
4.17.4 TCPA_KEY_FLAGS ...36
4.17.5 TCPA_ASYM_HASH ..37
4.17.6 TCPA_STORE_ASYMKEY ...38
4.17.7 TCPA_MIGRATE_ASYMKEY..41
4.17.8 TCPA_MAINTENANCE_ASYMKEY...42

4.18 TCPA_AUTH ...43
4.19 TCPA_CERTIFY_INFO Structure..44
4.20 TCPA_QUOTE_INFO Structure..45
4.21 TCPA_KEY_INFO..46

TCPA Main Specification Page vi

Version 1.0 25 January, 2001

4.22 Flag Structures ..47
4.22.1 TCPA_PERSISTENT_FLAGS Structure...48
4.22.2 TCPA_VOLATILE_FLAGS Structure..50

4.23 Credentials ..51
4.23.1 Evidence of Subsystem Endorsement ..52
4.23.2 Evidence of Platform Endorsement ..54
4.23.3 Evidence of Platform Conformance..56
4.23.4 TCPA Validation Data ...58
4.23.5 Evidence of Trusted Platform Module Identity ...59

4.24 TCPA_ALGORITHM_PARMS...61
4.25 Identity Structures ..62

4.25.1 TCPA_IDENTITY_CONTENTS ...62
4.25.2 TCPA_SYMMETRIC_KEY ..63
4.25.3 TCPA_IDENTITY_REQ...64
4.25.4 TCPA_SYM_IDENTITY_REQ..65
4.25.5 TCPA_ASYM_IDENTITY_REQ ...66
4.25.6 TCPA_ASYM_CA_CONTENTS...67
4.25.7 TCPA_SYM_CA_ATTESTATION ..68

4.26 TCPA_CHANGEAUTH_VALIDATE ...69
4.27 TCPA_MIGRATIONKEYAUTH ...70
4.28 TCPA_PROTOCOL_ID ..71
4.29 TCPA_ENTITY_TYPE..72
4.30 TCPA_STARTUP_TYPE ..73
4.31 Command Ordinals ..74

5. Authorization and Ownership ...76
5.1 Introduction ...76
5.2 Authorization protocols ..78

5.2.1 OI-AP description ...79
5.2.2 TPM_OIAP...81
5.2.3 Authorization using an OI-AP session ..82
5.2.4 OS-AP Description..84
5.2.5 TPM_OSAP ...87
5.2.6 Authorization using an OS-AP session ...88

5.3 TPM_Terminate_Handle ..91
5.4 ADIP – Creating a New Entity...92
5.5 ADCP - Changing Authorization Data..94
5.6 TPM_ChangeAuth...95
5.7 Asymmetric Authorization Change Protocol ...97

5.7.1 TPM_ChangeAuthAsymStart ...97
5.7.2 TPM_ChangeAuthAsymFinish... 100

5.8 Authorization Data... 102
5.9 Nonces ... 102
5.10 Authorization Handle.. 103
5.11 HMAC Calculation.. 104

5.11.1 HMAC Long Parameters ... 105
5.12 TPM Ownership... 106

5.12.1 TPM_TakeOwnership ... 107
6. Integrity Collection and Reporting .. 109

6.1 Introduction ... 109
6.2 Platform Configuration Registers .. 110

6.2.1 Format and Properties .. 110
6.2.2 Initialization .. 110
6.2.3 Authorized PCRs .. 110

6.3 Operations Supporting Integrity Collection and Reporting ... 111
6.3.1 TPM_Extend .. 111
6.3.2 TPM_PcrRead .. 112

TCPA Main Specification Page vii

Version 1.0 25 January, 2001

6.3.3 TPM_Quote.. 113
6.3.4 TSS_LogExtendEvent ... 115
6.3.5 TSS_GetExtendEvent ... 117
6.3.6 TSS_GetExtendEventLog ... 119
6.3.7 TSS_DisposeEventLog ... 120
6.3.8 TPM_DirWriteAuth.. 121
6.3.9 TPM_DirRead .. 122

7. Protected Storage... 123
7.1 Introduction ... 125

7.1.1 Characteristics.. 125
7.1.2 Key Storage ... 127

7.2 Mandatory Functions ... 127
7.2.1 TPM_Seal .. 128
7.2.2 TPM_Unseal .. 131
7.2.3 TSS_Bind... 134
7.2.4 TPM_UnBind .. 136
7.2.5 TPM_CreateWrapKey ... 137
7.2.6 TPM_CreateWrapKeyToPcr .. 139
7.2.7 TSS_WrapKey.. 141
7.2.8 TSS_WrapKeyToPcr... 143
7.2.9 TPM_LoadKey.. 145
7.2.10 TPM_GetPubKey .. 147
7.2.11 TPM_CreateMigrationBlob .. 148
7.2.12 TPM_MigrateMigrationBlob ... 150
7.2.13 TPM_LoadMigrationBlob... 152
7.2.14 TPM_AuthorizeMigrationKey ... 154

7.3 TPM Optional Functions: Maintenance.. 155
7.3.1 TPM_CreateMaintenanceArchive... 157
7.3.2 TPM_LoadMaintenanceArchive ... 159
7.3.3 TPM_KillMaintenanceFeature.. 161

8. Cryptographic and Miscellaneous Functions ... 162
8.1 Introduction ... 162
8.2 Hash Operations ... 162

8.2.1 TSS_HashAll.. 163
8.2.2 TSS_HashInit ... 164
8.2.3 TSS_HashUpdate... 165
8.2.4 TSS_HashFinal .. 166

8.3 HMAC Commands... 167
8.3.1 TSS_HMACAll.. 168
8.3.2 TSS_HMACInit ... 169
8.3.3 TSS_HMACUpdate... 170
8.3.4 TSS_HMACFinal .. 171

8.4 Key Certification .. 172
8.4.1 TPM_CertifyKey ... 172

8.5 Symmetric Encryption .. 174
8.5.1 TSS_EncryptAll .. 175
8.5.2 TSS_EncryptInit.. 176
8.5.3 TSS_EncryptUpdate ... 177
8.5.4 TSS_EncryptFinal... 178
8.5.5 TSS_DecryptAll .. 179
8.5.6 TSS_DecryptInit ... 180
8.5.7 TSS_DecryptUpdate ... 181
8.5.8 TSS_DecryptFinal... 182

8.6 Digital Signatures .. 183
8.6.1 TPM_Sign .. 183
8.6.2 TSS_VerifySignature .. 184

TCPA Main Specification Page viii

Version 1.0 25 January, 2001

8.7 Random Numbers ... 185
8.7.1 TPM_GetRandom... 186
8.7.2 TPM_StirRandom ... 187

8.8 Self Test ... 188
8.8.1 TPM_SelfTestFull ... 189
8.8.2 TPM_SelfTestStartup.. 190
8.8.3 TPM_CertifySelfTest... 191

8.9 Reset and Clear Operations ... 192
8.9.1 TPM_Reset .. 193
8.9.2 TPM_Init .. 194
8.9.3 TPM_SaveState ... 195
8.9.4 TPM_Startup.. 196
8.9.5 TPM_OwnerClear... 197
8.9.6 TPM_DisableOwnerClear .. 198
8.9.7 TPM_ForceClear .. 199
8.9.8 TPM_DisableForceClear ... 200

8.10 The GetCapability Commands .. 201
8.10.1 TPM_GetCapability... 202
8.10.2 TSS_GetCapability ... 204
8.10.3 TPM_GetCapabilitySigned .. 205

8.11 Audit Commands ... 207
8.11.1 TPM_GetAuditEvent ... 208
8.11.2 TSS_GetAuditLog... 209
8.11.3 TPM_SetOrdinalAuditStatus .. 210
8.11.4 TPM_GetOrdinalAuditStatus.. 211

8.12 Enabling Ownership ... 212
8.12.1 TPM_SetOwnerInstall ... 213

8.13 Enabling a TPM ... 214
8.13.1 TPM_OwnerSetDisable ... 215
8.13.2 TPM_PhysicalDisable ... 216
8.13.3 TPM_PhysicalEnable.. 217

8.14 Activating a TPM.. 218
8.14.1 TPM_PhysicalSetDeactivated.. 219
8.14.2 TPM_SetTempDeactivated.. 220

8.15 TPM_FieldUpgrade.. 221
8.16 TPM Internal RSA Operations on Arbitrarily Sized Data.. 223

8.16.1 TPM_Internal_Encrypt .. 224
8.16.2 TPM_Internal_Signature ... 226

8.17 TPM_SetRedirection .. 227
9. Subsystem Credentials ... 229

9.1 Introduction ... 229
9.2 Endorsement... 229

9.2.1 TPM_CreateEndorsementKeyPair ... 230
9.2.2 TPM_ReadPubek ... 232
9.2.3 TPM_DisablePubekRead .. 233
9.2.4 TPM_OwnerReadPubek ... 234

9.3 Generating a Trusted Platform Module Identity.. 235
9.3.1 TPM_MakeIdentity.. 238
9.3.2 TSS_CollateIdentityRequest.. 241
9.3.3 Contacting a Privacy CA ... 244
9.3.4 TPM_ActivateTPMIdentity ... 245
9.3.5 TSS_RecoverTPMIdentity ... 246

9.4 Instantiation of Data When Contacting a Privacy CA .. 248
9.4.1 From Owner to Privacy CA .. 248
9.4.2 From Privacy CA to Owner.. 249

9.5 Instantiation of Credentials as Certificates ... 251

TCPA Main Specification Page ix

Version 1.0 25 January, 2001

9.5.1 Instantiation of TPM_ENDORSEMENT_CREDENTIALs.. 252
9.5.2 Instantiation of Platform_credentials... 255
9.5.3 Instantiation of TPM_CONFORMANCE_CREDENTIAL... 258
9.5.4 Instantiation of Validation Certificate .. 261
9.5.5 Instantiation of TPM_IDENTITY_CREDENTIAL.. 264
9.5.6 ASN.1 Definitions ... 268

10. Conformance Criteria.. 270
10.1 Base Levels for Interoperability ... 270
10.2 Conformance Specification Sheet ... 270
10.3 Protocol Negotiation and Algorithm Agility.. 270
10.4 Cryptographic Algorithms and Protocols .. 271

10.4.1 Asymmetric .. 271
10.4.2 Symmetric .. 272
10.4.3 Hashing ... 272
10.4.4 Signature Operations .. 272
10.4.5 Creating a PCR composite hash.. 273
10.4.6 Using Secret Keys .. 273

10.5 Random Number Generator (RNG)... 274
10.5.1 Entropy Source and Collector .. 274
10.5.2 State Register .. 274
10.5.3 Mixing Function .. 275
10.5.4 RNG Reset ... 275

10.6 Key Generation.. 275
10.6.1 Asymmetric .. 276
10.6.2 Symmetric.. 276
10.6.3 Nonce Creation .. 276

10.7 Auditing ... 276
10.8 Self-Tests.. 276

10.8.1 Required Self-Tests .. 277
10.8.2 Recommended Checks... 277
10.8.3 Self-Test Failure ... 277

10.9 Object Reuse... 277
10.10 Maintenance.. 278
10.11 Backup.. 278
10.12 Strength of Function ... 278
10.13 Protection Profile ... 279
10.14 Compliance to Specification.. 279
10.15 Field Upgrade.. 280
10.16 Physical Presence or Access.. 280
10.17 Other Specifications ... 281

11. Appendix A: Glossary.. 282

TCPA Main Specification Page 1

Version 1.0 25 January, 2001

1. Forward
This document is an industry specification that enables trust in computing platforms in general.

This specification defines a trusted Subsystem that is an integral part of each platform, and provides
functions that can be used by enhanced operating systems and applications. The Subsystem employs
cryptographic methods when establishing trust, and while this does not in itself convert a platform into a
secure computing environment, it is a significant step in that direction.

Standardization is necessary so that the security and cryptographic community can assess the
mechanisms involved, and so that customers can understand and trust the effectiveness of new features.
Manufacturers will compete in the marketplace by installing Subsystems with varying capabilities and cost
points. The Subsystem itself will have basic functions that maintain privacy, yet support the identity and
authentication of entities such as the platform, the user, and other entities. The Subsystem will have other
capabilities to protect data and verify certain operational aspects of the platform. It can be a separate
device or devices, or it can be integrated into some existing component or components provided the
implementation meets the requirements of this specification. This is necessary to achieve the
fundamental goal of ubiquity.

Please note a very important distinction between different sections of text throughout this document.
Beginning in chapter 2, “The Trusted Platform Subsystem,” you will encounter two distinctive kinds of text:
informative comment and normative statements. Because most of the text in this specification will be of
the kind normative statements, the authors have informally defined it as the default and, as such, have
specifically called out text of the kind informative comment. They have done this by flagging the beginning
and end of each informative comment and highlighting its text in gray. This means that unless text is
specifically marked as of the kind informative comment, you can consider it of the kind normative
statements.

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD
NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in the chapters 2-10 normative statements are to be
interpreted as described in [RFC-2119].

For example:

This is the first paragraph of 1–n paragraphs containing text of the kind informative comment ...

This is the second paragraph of text of the kind informative comment ...

This is the nth paragraph of text of the kind informative comment ...

To understand the TCPA specification the user must read the specification. (This use of MUST does not
require any action).

This is the first paragraph of one or more paragraphs (and/or sections) containing the text of the kind
normative statements ...

To understand the TCPA specification the user MUST read the specification. (This use of MUST indicates
a keyword usage and requires an action).

TCPA Main Specification Page 2

Version 1.0 25 January, 2001

2. The Trusted Platform Subsystem

2.1 Introduction

Start of informative comment:

The TCPA Subsystem design is to provide useful trust and security capabilities while minimizing the
number of functions that must be trusted. This arrangement is necessary to make the Subsystem useful
while remaining low in cost and can result in unusual features as compared with a conventional crypto co-
processor.

End of informative comment.

2.2 Roots of Trust

Start of informative comment:

This section introduces the architectural aspects of a Trusted Platform that enable the collection and
reporting of integrity metrics.

Among other things, a Trusted Platform enables an entity to determine the state of the software
environment in that platform and to SEAL data to a particular software environment in that platform.

The entity deduces whether the state of the computing environment in that platform is acceptable and
performs some transaction with that platform. If that transaction involves sensitive data that must be
stored on the platform, the entity can ensure that that data is held in a confidential format unless the state
of the computing environment in that platform is acceptable to the entity.

To enable this, a Trusted Platform provides information to enable the entity to deduce the software
environment in a Trusted Platform. That information is reliably measured and reported to the entity. At the
same time, a Trusted Platform provides a means to encrypt cryptographic keys and to state the software
environment that must be in place before the keys can be decrypted.

Both these functions require integrity metrics. These metrics consist of data reflecting the integrity of the
software state of the Trusted Platform. Both functions require two roots of trust in a platform. One is
known as the “root of trust for measuring integrity metrics,” and the other is known as
storing and reporting integrity metrics.”

The root of trust for measuring integrity metrics is likely to be different for different types of platforms
because the metrics and their measurements will depend on the type of platform. The root of trust for
storing and reporting integrity metrics enables integrity metrics to be reliably stored and reported and can
have the same capabilities, irrespective of the type of platform.

A “trusted measurement root” measures certain platform characteristics, logs the measurement data in a
measurement store, and stores the final result in a TPM (which contains the root of trust for storing and
reporting integrity metrics). The trusted measurement root might also measure the characteristics of
another measurement agent before passing control to the second agent. That second agent might repeat
the process of measuring platform characteristics, storing measurement data and the final result, passing
control to a third measurement agent, and so on.

When an integrity challenge is received, the Trusted Platform Agent gathers the following:

• the final results from the TPM,

• the log of the measurement data from the Trusted Platform Measurement Store, and

• TCPA Validation Data that states the values that the measurements should produce in a platform that
is working correctly.

The Trusted Platform Agent then sends this measurement data to the Challenger. The Challenger uses
the data to check that it is consistent with the final results and then compares the data (and perhaps the
final results) with the TCPA Validation Data. This comparison enables the Challenger to deduce the

TCPA Main Specification Page 3

Version 1.0 25 January, 2001

software state of the Trusted Platform and consequently decide whether the Challenger is satisfied to
trust the platform for the intended purpose.

Once the Challenger has determined that the Trusted Platform can be trusted, the Challenger can use the
TPM to store keys alongside stated values of integrity metrics, such that the TPM will not release the keys
unless the current measured values of integrity metric match the stated values of integrity metric.

Both roots of trust, plus certain other capabilities for other purposes, must be implemented in ways that
enable confidence in their correct operation in all circumstances of interest. A Challenger must be able to
trust the roots and these capabilities. The implementation of the root of trust for measurement will typically
vary depending on the type of platform (for example, PC, server, or phone). The TPM is defined as the
set of all trusted capabilities apart from the root of trust for measurement, because these are independent
of the type of platform. The whole Subsystem, therefore, typically consists of a root of trust for measuring
integrity metrics, plus a TPM, plus other functions (the Support Services, or SS) that do not have to be
trusted to function properly. Those other functions must still operate properly if the Subsystem is to
operate properly, but any misbehavior of the SS can be detected. Any misbehavior of the functions in a
root, or in the TPM, on the other hand, cannot be detected.

It is not the intention of this specification to specify the method of construction of either the Subsystem or
the TPM, provided that they meet the requirements of this specification. The following diagram is an
indication of the functional elements of a typical TPM.

End of informative comment.

 A Trusted Platform SHALL include the following:

• at least one root of trust for measuring integrity metrics,

• exactly one root of trust for storing and reporting integrity metrics,

• at least one Trusted Platform Measurement Store,

RNGHash

Hmac

Power detection

Asymmetric key generation

Asymmetric encryption co-processor

Computing engine

TPM-owner memory

Nonce
Auth handle
Digest
Ephemeral secret

TPM-owner memory

Nonce
Auth handle
Digest
Ephemeral secret

entity-owner memory

Nonce
Auth handle
Digest
Ephemeral secret

Keys
Private endorsement (2048b)
StorageRootKey (2048b)
Maintenance (2048b)
TPME-identity-key (2048b)

Authorisation (160b)
Owner

Flags
KillMaintenance
DisableOwnerReset
TPMStaticDisable

RNG-state-register (variable)
Data-integrity-register (DWORD)
MAC-secret (variable)

Programs (variable, large)

Non-volatile memory

Keys
Private endorsement (2048b)
StorageRootKey (2048b)
Maintenance (2048b)
TPME-identity-key (2048b)

Authorisation (160b)
Owner

Flags
KillMaintenance
DisableOwnerReset
TPMStaticDisable

RNG-state-register (variable)
Data-integrity-register (DWORD)
MAC-secret (variable)

Programs (variable, large)

Non-volatile memory

Parent key (2048b)
Child key (2048b)
Scratch pad

memory

Parent key (2048b)
Child key (2048b)
Scratch pad

memory

TPM contents

PlatformConfigurationRegister0

…….

PlatformConfigurationRegister7

PCRs (DWORDs)

PlatformConfigurationRegister0

…….

PlatformConfigurationRegister7

PlatformConfigurationRegister0

…….

PlatformConfigurationRegister7

PCRs (DWORDs)

TCPA Main Specification Page 4

Version 1.0 25 January, 2001

• at least one TCPA Validation Data, and

• exactly one Trusted Platform Agent.

The Endorsement Key is transitively bound to the Platform via the TPM as follows:

1. An Endorsement Key is bound to one and only one TPM (i.e., there is a one to one correspondence
between an Endorsement Key and a TPM.)

2. A TPM is bound to one and only one Platform. (i.e., there is a one to one correspondence between a
TPM and a Platform.)

3. Therefore, an Endorsement Key is bound to a Platform. (i.e., there is a one to one correspondence
between an Endorsement Key and a Platform.)

An instantiation of the root of trust for measuring integrity metrics, while acting as the root of trust for
measuring integrity metrics, SHALL do the following:

• execute no programs other than those intended by the entity that vouches for the root of trust for
measuring integrity metrics,

• be resistant to the forms of software attack and to the forms of physical attack implied by the
platform’s Protection Profile,

• accurately measure at least one integrity metric that indicates the software environment of a platform,

• accurately record measured integrity metrics to a root of trust for storing and reporting integrity
metrics, and

• accurately record details of the process of measuring all its integrity metrics to a Trusted Platform
Measurement Store.

An instantiation of the root of trust for storing and reporting integrity metrics SHALL do the following:

• be resistant to all forms of software attack and to the forms of physical attack implied by the platform’s
Protection Profile,

• accept recording of measured integrity metrics, and

• supply an accurate digest of all sequences of presented integrity metrics.

An instantiation of a Trusted Platform Measurement Store SHOULD do the following:

• accurately accept, store and supply details of at least one process of measuring an integrity metric.

An instantiation of the repository for TCPA Validation Data SHOULD do the following:

• accurately store and supply a predicted value of at least one integrity metric.

An instantiation of the Trusted Platform Agent SHOULD do the following:

• obtain and supply an accurate report from the root of trust for storing and reporting integrity metrics of
at least one sequence of integrity metrics in a form that prevents misrepresentation of that sequence
or its source,

• obtain and supply an accurate report from a Trusted Platform Measurement Store of at least one set
of details describing the measurement of an integrity metric, and

TCPA Main Specification Page 5

Version 1.0 25 January, 2001

2.3 Integrity Operations

2.3.1 Storage of Integrity Metrics

Start of informative comment:

This section introduces the way that sequences of values of integrity metrics are stored in a TPM. This
section does not describe the way that logs of the measurement process are stored in the Trusted
Platform Measurement Store.

Each entry in the log inside the Trusted Platform Measurement Store contains a description of a
measured entity plus an appropriate integrity metric that has been recorded inside a TPM. The log can be
used to reproduce the value of each sequence of integrity metrics inside the TPM. If the log and the TPM
are consistent and the TPM is trustworthy, the log can be trusted. If the values derived from the log and
the values reported by the TPM are the same, the log is presumed to be an accurate record of the steps
involved in building the software environment of the target platform. Consequently, the descriptions in the
log of the measured entities represent the actual entities that contributed to the software environment
inside the platform. Any difference between the values derived from the log and the values reported by
the TPM indicate an undesirable inconsistency in the state of the target platform.

The mechanism used by the TPM to store sequences of values of integrity metrics is the subject of this
section. This method must be reproduced when verifying the consistency of the values derived from the
log and the values reported by the TPM.

A large number of integrity metrics may be measured in a platform, and a particular integrity metric may
change with time and a new value may need to be stored. It is difficult to authenticate the source of
measurement of integrity metrics, and as a result a new value of an integrity metric cannot be permitted to
simply overwrite an existing value. (A rogue could erase an existing value that indicates subversion and
replace it with a benign value.) Thus, if values of integrity metrics are individually stored, and updates of
integrity metrics must be individually stored, it is difficult to place an upper bound on the size of memory
that is required to store integrity metrics.

The TCPA solution is not to store individual integrity metrics. Instead, a Trusted Platform provides a way
to store sequences of integrity metrics. Values of integrity metrics cannot be “stored” inside a TPM, and
must instead be appended to a sequence. The states of all sequences inside a TPM are set to a known
value at power-up. Each new integrity metric must be appended to a sequence and must modify the value
of that sequence. The actual TCPA method is to concatenate the value of a new integrity metric with the
existing value of the sequence, compute a digest of the concatenation, and use that digest as the new
representation of the sequence.

This method enables one or more sequences to represent an arbitrary number of integrity metrics and
their updates. The fewer the number of sequences, the more difficult it becomes to interpret the meaning
of the value of a sequence. The greater the number of sequences, the more costly it becomes to provide
storage. A particular implementation must make a trade-off between cost and difficulty of interpretation.

End of informative comment.

Integrity metrics that are presented to a TPM SHALL be stored inside that TPM in a way that prevents
misrepresentation of the presented values or of the sequence in which they were presented.

2.3.2 Reporting of Integrity Metrics

Start of informative comment:

This section introduces the way that sequences of integrity metrics are reported by a TPM.

An entity seeking to know the state of the computing environment inside a Trusted Platform depends
critically on the values of the integrity metrics. The integrity metrics enable an entity to determine the
consistency of the measurement information and compare the actual and expected states of the platform.

TCPA Main Specification Page 6

Version 1.0 25 January, 2001

It follows, then, that the integrity metrics must be reported by a trusted mechanism. That trusted
mechanism is the TPM (which includes the root of trust for storing and reporting integrity metrics). The
TPM proclaims its trustworthiness by signing data, using one of its identities and conventional
cryptographic techniques. The signature key is known only to the TPM and is the private key of a key
pair. The corresponding public key is an identity key, since it is a cryptographic value by which the TPM is
known. Together, the signature key and the identity key are part of an identity of the TPM.

A person or (more probably) an organization vouches for the TPM by attesting to a TPM identity. Before
agreeing to provide attestation, the organization checks the construction credentials of the TPM, the
design credentials of the platform that incorporates the TPM, and the construction credentials of the
platform that incorporates the TPM. When the TPM reports the values of the sequences of integrity
metrics that it has stored, the TPM signs those values using a TPM identity. When an entity receives
signed data that originated in a TPM, the entity can verify that the data has not been changed in transit.
The entity can also check that the data was signed by a TPM identity and that an organization known to
the entity has attested to the TPM identity.

The TPM uses a conventional method to defeat replay attacks. That is, the entity provides a nonce that
the TPM concatenates with the sequence values, before signing the values, and the signed result is
returned by the Trusted Platform Agent to the entity. The actual capability provided by the TPM may be
considered to be an “integrity signature.” The TPM accepts arbitrary data, concatenates that arbitrary
data with the sequence values, and signs the concatenated data using the signature key of a TPM
identity. When providing sequence values, that arbitrary data is simply a nonce that was provided by the
challenging entity. The signed data proves that the sequence values have been supplied by a “live” TPM.

At other times, the challenging entity may wish to obtain specific information from a Trusted Platform.
Then, the arbitrary data could be a digest of the specific information. The signed data proves the state of
the computing environment inside the Trusted Platform at the time that the specific information was
supplied.

End of informative comment.

Sequences of integrity metrics reported by the TPM SHALL be reported by that TPM in a way that
prevents misrepresentation of the sequences and prevents misrepresentation of the reporting TPM

2.4 Use of Keys Associated with TPM Identities

Start of informative comment:

The private (signature) key associated with a TPM identity must be used only for signatures. (It is poor
security practice to use the same asymmetric key for both signing and confidentiality.) If a TPM identity
requires the use of confidentiality, the TPM must create a separate confidentiality key. A TPM identity can
indicate that a confidentiality key “belongs” to a TPM identity by signing the confidentiality key.

The private (signature) keys associated with TPM identities must be used only for special operations and
must be indelibly stored with flags that mark them as belonging to TPM identities. Currently, the special
operations are signing sequence values, signing other keys that were generated inside the TPM, and
signing data when obtaining attestation to the identity.

A TPM must use private keys associated with TPM identities only for these special purposes, and must
refuse to use private keys associated with TPM identities for other purposes. Otherwise, a rogue may
construct data (outside the TPM) that has the same format as that used by the TPM for these special
operations, and cause a TPM to sign that data using a private key associated with TPM identity. Such
data would be misinterpreted as genuine data constructed by the TPM for those special purposes, and
could subvert the trust in those special purposes.

If the TPM prevents such a masquerade, a third party can always be certain that data (signed by a private
key associated with a TPM identity) was actually generated by a TPM for one of those special operations.
To avoid any possibility of confusion over which legitimate capability is using a TPM identity, any
capability that signs using a TPM identity will perform the signature over data that includes the ordinal
(label) of the command.

TCPA Main Specification Page 7

Version 1.0 25 January, 2001

End of informative comment.

It MUST be possible to reliably distinguish between the private key of a TPM identity and other keys.

A key that is distinguished as the private key of a TPM identity SHALL NOT be used except for
generating a digital signature value when the data being signed includes an accurate indication of the
capability being executed. A TPM SHALL NOT use a key that is distinguished as the private key of a TPM
identity except when signing on behalf of a TPM identity during the part of a TCPA “protected capability”
whose specification requires the signature of a TPM identity.

When signing on behalf of a TPM identity during the part of a TCPA protected capability whose
specification requires the signature of a TPM identity, a TPM SHALL NOT use a key other than one that
is distinguished as the private key of a TPM identity.

2.5 Cryptographic Operations

Start of informative comment:

This section introduces the use of cryptographic operations within the Subsystem. Note that this
specification does not include the AES. It is probable, however, that future versions of this specification
will include the AES.

The Subsystem employs conventional cryptographic operations in conventional ways. Those operations
include the following:

• Hashing (SHA-1)

• Random number generation (RNG)

• Asymmetric key generation (RSA)

• Asymmetric encryption/decryption (RSA)

• Symmetric encryption/decryption (3DES)

The Subsystem uses these capabilities to perform generation of random data, generation of asymmetric
and symmetric keys, signing and confidentiality of stored data. The Subsystem also uses confidential
messaging for its own purposes, but does not provide a general-purpose symmetric confidentiality
service. This choice is deliberate, because the fundamental TCPA objective is to improve trust in a
general-purpose computing platform. Hence, TCPA provides only those functions that are necessary to
improve confidence in such a platform so that processing (including conventional security functions) on
the platform can be done with greater confidence.

The TPM contains the minimum set of capabilities that are required to be trusted. The TPM capabilities
must be trustworthy if the Subsystem is to be trusted. Other Subsystem capabilities must (of course)
function properly if the Subsystem is to work as expected.

The TPM contains the following crypto capabilities:

• Hashing (SHA-1)

• Random number generation (RNG)

• Asymmetric key generation (RSA)

• Asymmetric encryption/decryption (RSA)

Note that this list does not include symmetric encryption. This is for reasons of cost.

The hash capability is for use primarily by the TPM, since the TPM requires access to a trusted hash
function. The hash capability is exported by the TPM just to improve hash availability during the boot
phase of a platform, when the “RTM” and other measurement agents probably have restricted access to
the platform’s main processing engine.

TCPA Main Specification Page 8

Version 1.0 25 January, 2001

The untrusted part of the Subsystem must include symmetric encryption functionality, but does not
include an RNG. The TSS may also include duplicate asymmetric key generation and asymmetric
encryption capabilities depending on the usefulness of TCPA protected capabilities to the TSS.

The Random Number Generator consists of a state-machine that accepts and mixes unpredictable data
and a post-processor that is a one-way function (such as a hash algorithm). This architecture is chosen to
provide a good source of random data without requiring that the TPM include a genuine source of
unpredictable data (which may be expensive).

The state-machine has non-volatile state, is initialized with unpredictable data before delivery to a
customer, and can at any time accept further (unpredictable) data. Such data may be provided by
hardware (from thermal noise, for example), or by software (monitoring keyboard strokes, for example).
Some such unpredictable data must be inserted every time that a platform boots. Naturally, a hardware
source is likely to supply data at a higher baud rate than a software source. That “further data” is mixed
into the existing state of the machine and as a result improves the unpredictability of the state of the
state-machine. Neither the Owner of the TPM nor the manufacturer of the TPM can deduce the state of
the state-machine. The post-processor is used to “condense” the output of the state-machine into data
that has sufficient and uniform entropy. (The one-way function will use more bits of input data than it
produces as output.)

End of informative comment.

2.6 Opting to use a TPM

Start of informative comment:

It is necessary to provide features that activate a TPM. This is for reasons of privacy.

A TPM is necessarily activated by a reset. This, however, causes the TPM to discard any existing secrets,
and puts the TPM into its virgin state, waiting for an Owner. It leaves the TPM vulnerable to ownership by
anyone who knows the PUBEK of the TPM and can get a “take ownership” command to the TPM. To fail
safe, the true Owner would need to take ownership as soon as possible after a TPM has been reset. If
desired, the true Owner could then withhold the authorization information that is necessary to use the
TPM. Since a TPM can have only one Owner, this prevents any use of the TPM until the true Owner
decides to use it.

It is therefore desirable to provide methods that deactivate and activate a TPM without destroying existing
secrets. Then the Owner of the TPM (or a user) may deactivate the TPM in order to prevent inadvertent
use of the TPM, and later reactivate the TPM in order to use current secrets. It is also desirable to provide
methods that activate and deactivate the process of taking ownership, in case the true Owner does not
wish to take ownership (at least, not yet).

The TCPA specification defines a set of capabilities to enable/disable a TPM, activate/deactivate a TPM,
and enable/disable the process of taking ownership of the TPM.

The overall effect of the disabling capabilities is that a disabled TPM does little of value, apart from
keeping accurate records of integrity metrics and acknowledging that the TPM exists. A disabled TPM is,
therefore, effectively “off”.

The overall effect of the deactivating capabilities is that an inactive TPM does nothing, apart from keeping
accurate records of integrity metrics, acknowledging that the TPM exists, and permitting the process of
installing an owner in the TPM.

There are obviously many combinations of the particular states of TPM enabled/disabled, TPM
active/inactive, install-owner enabled/disabled. It may be that some suppliers will choose to supply a
virgin TPM that is enabled, active, and with “install owner” enabled, because that is what is required by
their customer. At the other extreme, if a virgin TPM is supplied in the disabled and inactive state, with
“take ownership” disabled, three steps are required in order to activate the TPM. One possible activation
sequence would be:

1. The prospective Owner should enable the TPM.

TCPA Main Specification Page 9

Version 1.0 25 January, 2001

2. The prospective Owner should attempt to take ownership.

3. The prospective Owner should activate the TPM.

This particular sequence gives maximum control to the Owner, and permits verification that taking
ownership has succeeded, before the TPM is activated.

There are other possibilities between these two extremes. It may be that a virgin TPM is enabled but
inactive, with “take ownership” disabled, for example. This may be an advantage if the process of
enabling a TPM is non-trivial.

End of informative comment.

2.6.1 Enabling Ownership

Start of informative comment:

If a TPM does not have an Owner, it is desirable to provide a method that enables or disables the process
by which a prospective Owner takes ownership of a TPM. Ideally this method would work both locally and
remotely. Unfortunately authenticated commands cannot be interpreted by the TPM if it does not have an
Owner. Hence the method of enabling or disabling the process of taking ownership is a local command,
and no remote option is provided. (In a PC, these local controls could be made available during the
POST, for example.)

End of informative comment.

2.6.2 Activating a TPM

Start of informative comment:

It is desirable to provide methods that activate or deactivate a TPM without permanently preventing
access to secrets protected by the TPM. The provision of deactivation methods exposes a denial-of-
service attack, but this is considered a worthwhile price to pay for improved privacy.

One method should certainly be the use of commands authorized by the Owner. This method has the
advantage that it proves possession of sufficient privilege, and can be used either locally or remotely. A
drawback of this method is that the platform must (probably) be fully active in order to communicate an
authorized command to a TPM. The concern is that the TPM may inadvertently be used inbetween the
platform becoming fully active and an authorized “deactivate” command being received by the TPM.
Another disadvantage is that it may be necessary to disable a TPM when the Owner is not available.
Other methods are, therefore, also required. The scope of these methods must reflect any uncertainty
about possession of sufficient privilege.

One method is required to operate before the platform is fully active. In these circumstances, it may be
difficult to check authorization. The method adopted by TCPA is to use software controls that are
remotely inaccessible. These are intended to provide local activation only (not remote activation), but this
depends upon the degree to which the control software is actually inaccessible to remote entities.

Another method is to required to operate when the platform is fully active, but without Owner
authorization. The method adopted by the TCPA is to use an unauthorized command that has a limited
effect – it can be used just to deactivate a TPM, and the effect lasts only until the platform is rebooted.

The method of final resort to activate a TPM is to use a physical (electrical) input to the TPM that cannot
be controlled by software executing on the main platform. This method (obviously) provides local
activation but not remote activation. This method is useful if no one has taken ownership, or the Owner’s
authorization has been lost, but one or more User authorization data are still known. In the latter case, the
TPM can be activated and Users can use their secrets to recover as much as possible of their data.

This specification uses four methods of activation (while retaining current TPM secrets):

TCPA Main Specification Page 10

Version 1.0 25 January, 2001

1. A physical (electrical) input to the TPM that cannot be controlled by software executing on the main
platform. Enabling this physical input could involve opening of the platform and throwing a switch, or
activation of a physical lock, for example. Each use of the control causes a transitory activate event at
the TPM. This (obviously) provides local activation but not remote activation.

2. An authenticated command to the TPM from the Owner. This provides either local or remote
activation of the TPM.

3. The use of software controls that are remotely inaccessible. These are intended to provide local
activation and not remote activation, but that property depends upon the degree to which the
controlling software is actually inaccessible to remote entities. (In a PC, these controls could be made
available during the POST, for example.)

4. A power-cycle of the platform. This is intended to provide local activation and not remote activation,
but that property depends upon the degree to which a reboot is actually inaccessible to remote
entities.

This specification uses three methods of deactivation (while retaining current TPM secrets):

1. An authenticated command to the TPM from the Owner. These provide either local or remote
deactivation of the TPM.

2. An unauthenticated command to the TPM. These provide either local or remote deactivation of the
TPM.

3. The use of software controls that are remotely inaccessible. These are intended to provide local
deactivation and not remote deactivation, but that property depends upon the degree to which the
controlling software is actually inaccessible to remote entities. (In a PC, these controls could be made
available during the POST, for example.)

End of informative comment.

2.6.3 Selected operations

Start of informative comment:

The methods to enable/disable a TPM, activate/deactivate a TPM, and enable/disable the process of
taking ownership of the TPM, can be combined in many ways. The selection made by TCPA is illustrated
in the following flowchart diagram, which illustrates a sequence of tests and decisions after Power-On-
Reset (POR):

TCPA Main Specification Page 11

Version 1.0 25 January, 2001

Bit Flag name Flag type Action to set TRUE Action to set FALSE
1 DISABLED_TPM Non-volatile 1) Owner auth cmd

2) Local cmd
1) Owner auth cmd
2) physical action

2 DISABLED_OWNER_INSTALL Non-volatile Local cmd Local cmd
3 DEACTIVATED_TPM Non-volatile Local cmd Local cmd
4 TEMP_DEACTIVATED_TPM Volatile Unauth cmd Platform reboot

(BIT1) This may be set or reset by an Owner authorized command (TPM_SetOwnerInstall 8.12.1). It
may be set by a local command (TPM_PhysicalDisable 8.13.2). It may be reset by a physical
action (TPM_PhysicalEnable 8.13.3).

 These methods permit the Owner to disable the TPM when necessary (provided the TPM is
accepting authorized commands from the Owner); permit a User or a Owner to disable a TPM via
local access to the platform; and permit a User or Owner to activate a TPM by the use of physical
access to the platform (which may or may not be trivial).

 The TPM is disabled by a command that has originated locally. It may be that this “local”
requirement restricts the operation of this command to times before an OS is running. The TPM is
also disabled by an Owner authorized command. It may be that this “authorization” requirement
restricts this command to times after the OS is running.

 The TPM can be enabled by a physical event at the platform (whether or not the TPM has an
Owner, and whether or not the OS is running). The TPM can also be enabled by an Owner
authorized command. It may be that this “authorization” requirement restricts this command to
times after the OS is running.

TCPA Main Specification Page 12

Version 1.0 25 January, 2001

(BIT 2) This may be set or reset by a local command (TPM_SetOwnerInstall 8.12.1).

 This method permits a User or Owner to enable or disable the process of taking ownership, via
local access to the platform. It may be that this “local” requirement restricts the operation of this
command to times before an OS is running.

 (BIT 3) This may be set or reset by a local command (TPM_PhysicalSetDeactivated 8.14.1).

 This method permits a User or an Owner to set the default active/deactive state of a TPM via
local access to the platform. It may be that this “local” requirement restricts the operation of these
commands to times before an OS is running.

(BIT 4) This may be set by a local command (TPM_SetTempDeactivated 8.14.2). Any alteration lasts
until the next boot cycle, when this bit is initialized to the state of BIT3.

 This method permits a User or the Owner to temporarily deactivate the TPM. An unauthorized
command causes the TPM to enter an inactive state. The TPM remains in that state until the
platform is rebooted.

The default states of the persistent bits (BIT 1, 2, 3) in a virgin platform are the choice of the supplier. In a
platform where “physical access” involves opening the platform, a supplier may wish to set DISABLE-
TPM=FALSE, for example. In a platform where the supplier knows that the customer will use the
Subsystem, a supplier may wish to set DISABLED_OWNER_INSTALL=FALSE and
DEACTIVATED_TPM=FALSE, for example. In a platform where the supplier is uncertain whether the
customer will use the Subsystem, a supplier may wish to set DISABLED_OWNER_INSTALL=TRUE and
DEACTIVATED_TPM=TRUE, for example.

Both a disabled TPM and an inactive TPM never prevent the “extend” capability from operating. This is
necessary in order to ensure that the records of sequences of integrity metrics in a TPM are always up-to-
date.

End of informative comment.

TCPA Main Specification Page 13

Version 1.0 25 January, 2001

3. Protection

3.1 Introduction

Start of informative comment:

The Protection Profile in the Conformance part of the specification defines the threats that are resisted by
a platform. This section, “Protection,” describes the properties of selected capabilities and selected data
locations within a platform that has a Protection Profile and has not been modified by physical means.

This section introduces the concept of protected capabilities and the concept of shielded locations for
data. Every definition of a TCPA capability states whether it is a protected capability. Data definitions
state whether the data must be held in shielded locations.

• A protected capability is one whose correct operation is necessary in order for the operation of the
Subsystem to be trusted.

• A shielded location is an area where data is protected against interference and prying, independent of
its form.

This specification uses the concept of protected capabilities so as to distinguish those Subsystem
capabilities that must be trustworthy. Trust in the Subsystem depends critically on the protected
capabilities. Subsystem capabilities that are not protected capabilities must (of course) work properly if
the Subsystem is to function properly.

This specification uses the concept of shielded locations, rather than the concept of “shielded data.” While
the concept of shielded data is intuitive, it is extraordinarily difficult to define because of the imprecise
meaning of the word “data.” For example, consider data that is produced in a safe location and then
moved into ordinary storage. It is the same data in both locations, but in one it is shielded data and in the
other it is not. Also, data may not always exist in the same form. For example, it may exist as vulnerable
plaintext, but also may sometimes be transformed into a logically protected form. This data continues to
exist, but doesn't always need to be shielded data - the vulnerable form needs to be shielded data, but
the logically protected form does not. If a specific form of data requires protection against interference or
prying, it is therefore necessary to say “if the data-D exists, it must exist only in a shielded location.” A
more concise expression is “the data-D must be extant only in a shielded location.”

Hence if trust in the Subsystem depends critically on access to certain data, that data should be extant
only in a shielded location and accessible only to protected capabilities. When not in use, such data could
be erased after conversion (using a protected capability) into another data structure. Unless the other
data structure was defined as one that must be held in a shielded location, it need not be held in a
shielded location.

End of informative comment.

3.2 Threat

Start of informative comment:

This section, “Threat,” defines the scope of the threats that must be considered when considering
whether a platform facilitates subversion of capabilities and data in a platform.

The design and implementation of a platform determines the extent to which the platform facilitates
subversion of capabilities and data within that platform. It is necessary to define the attacks that must be
resisted by TCPA-shielded locations and TCPA-protected capabilities in that platform.

The TPM Protection Profile defines all attacks that are resisted by the TPM. These attacks must be
considered when determining whether the integrity of TCPA-protected capabilities and data in TCPA-
shielded locations can be damaged. These attacks must be considered when determining whether there
is a backdoor method of obtaining access to TCPA-protected capabilities and data in TCPA-shielded
locations. These attacks must be considered when determining whether TCPA-protected capabilities
have undesirable side effects.

TCPA Main Specification Page 14

Version 1.0 25 January, 2001

End of informative comment.

For the purposes of the “Protection” section of the specification: the threats that MUST be considered
when determining whether the platform facilitates subversion of TCPA-protected capabilities or data in
TCPA-shielded locations SHALL include the methods inherent in physical attacks that should fail if the
platform complies with its protection profile, and SHALL include all methods that require execution of
instructions in a computing engine in the platform.

3.3 Integrity

Start of informative comment:

A TCPA-protected capability must be used to modify TCPA-protected capabilities or data in TCPA-
shielded locations. Other methods must not be allowed to modify TCPA-protected capabilities or data in
TCPA-shielded locations. Otherwise, the integrity of TCPA-protected capabilities and data in TCPA-
shielded locations is unknown.

End of informative comment.

A platform SHALL NOT facilitate the alteration of TCPA-protected capabilities or data in TCPA-shielded
locations, except by TCPA-protected capabilities.

3.4 Privileged Access

Start of informative comment:

Only TCPA-protected capabilities are allowed to use the data in TCPA-shielded locations. Otherwise, a
rogue can pretend to be a TCPA entity.

End of informative comment.

A platform SHALL NOT facilitate the disclosure or the exposure of data in TCPA-shielded locations,
except to TCPA-protected capabilities.

3.5 Side effects
Start of informative comment:

An implementation of a TCPA-protected capability must not disclose the contents of TCPA-shielded
locations. The only exceptions are when such disclosure is inherent in the definition of the capability or in
the methods used by the capability. For example, a capability might be designed specifically to reveal
hidden data or might use cryptography and hence always be vulnerable to cryptanalysis. In such cases,
some disclosure or risk of disclosure is inherent and cannot be avoided. Other forms of disclosure (by
side effects, for example) must always be avoided.

End of informative comment.

The implementation of a TCPA-protected capability in a platform SHALL NOT facilitate the disclosure or
the exposure of data in TCPA-shielded locations except by means unavoidably inherent in the TCPA
definition.

TCPA Main Specification Page 15

Version 1.0 25 January, 2001

4. Structures and Defines
Start of informative comment:

The following structures and formats describe the interoperable areas of the specification. There is no
requirement that internal storage or memory representations of data must follow these structures. These
requirements are in place only during the movement of data from a TPM to some other entity.

End of informative comment.

4.1.1 Endness of Structures

Each structure MUST use big endian bit ordering, which follows the Internet standard and requires that
the low-order bit appear to the far right of a word, buffer, wire format, or other area and the high-order bit
appear to the far left.

4.1.2 Byte Packing

All structures MUST be packed on a byte boundary.

TCPA Main Specification Page 16

Version 1.0 25 January, 2001

4.2 Defines

Start of informative comment:

The defines are found in tcpa_defines.h.

End of informative comment.

4.2.1 Basic data types

Parameters

Typedef Name Description

unsigned char BYTE Basic byte used to transmit all character fields.

unsigned char BOOL TRUE/FALSE field. TRUE = 0x01, FALSE = 0x00

unsigned short UINT16 16 bit field. The definition in different architectures may
need to specify 16 bits instead of the short definition

unsigned long UINT32 32 bit field. The definition in different architectures may
need to specify 32 bits instead of the long definition

 TRUE 0x01

 FALSE 0x00

4.2.2 Helper redefinitions

The following definitions are to make the IDL definitions more explicit and easier to read.

Parameters

Typedef Name Description

UINT32 TCPA_PCRINDEX Index to a PCR register

UINT32 TCPA_DIRINDEX Index to a DIR register

UINT32 TCPA_KEYHANDLE Handle to a loaded key

UINT32 TCPA_AUTHHANDLE Handle to an authorization session

UINT32 TSS_HASHHANDLE Handle to a hash session

UINT32 TSS_HMACHHANDLE Handle to a HMAC session

UINT32 TCPA_ENCHANDLE Handle to a encryption/decryption session

UINT32 TCPA_EVENTTYPE Type of PCR event. See 4.15

UINT32 TCPA_COMMAND_CODE The command ordinal. See 4.29

UINT32 TCPA_KEY_SLOT The slot where a key is held. 0 Based

UINT16 TCPA_PROTOCOL_ID The protocol in use. See 4.28

HRESULT TCPA_RESULT The return code from a function

BYTE TCPA_AUTH_DATA_USAGE When is authorization required for an entity

TCPA Main Specification Page 17

Version 1.0 25 January, 2001

4.2.3 Vendor specific

For all items that can specify an individual algorithm, protocol or item the specification allows for vendor
specific selections. The mechanism to specify a vendor specific mechanism is to set the high bit of the
identifier on.

The following defines allow for the quick specification of a vendor specific item.

Parameters

Name Value

TCPA_Vendor_Specific32 0x80000000
TCPA_Vendor_Specific16 0x8000
TCPA_Vendor_Specific8 0x80

TCPA Main Specification Page 18

Version 1.0 25 January, 2001

4.3 Return codes

Start of informative comment:

All functions return a standard set of return values. These are the TCPA specific return codes (the values
of TCPA_RESULT).

HRESULT is a basic type of IDL RPC function calls. Basing the return codes on these values allows for
the inclusion of the return code in the HMAC calculation when the TPM responds to a function.

End of informative comment.

Parameters

Name Value Description

TCPA_BASE 0x0 The start of TCPA return codes

TCPA_SUCCESS TCPA_BASE Successful completion of the operation

TCPA_AUTHFAIL TCPA_BASE + 1 Authentication failed

TCPA_BADINDEX TCPA_BASE + 2 The index to a PCR, DIR or other register is
incorrect

TCPA_BAD_PARAMETER TCPA_BASE + 3 One or more parameter is bad

TCPA_BUFSIZE TCPA_BASE + 4 The size specified in MaxSize is not large
enough to hold the data structure. If this error is
returned, *Size is still set to the buffer size
required.

TCPA_CLEAR_DISABLED TCPA_BASE + 5 The clear disable flag is set and all clear
operations now require physical access

TCPA_DEACTIVATED TCPA_BASE + 6 The TPM is deactivated

TCPA_DISABLED TCPA_BASE + 7 The TPM is disabled

TCPA_DISABLED_CMD TCPA_BASE + 8 The target command has been disabled

TCPA_FAIL TCPA_BASE + 9 The operation failed

TCPA_INACTIVE TCPA_BASE + 10 The TPM is inactive

TCPA_INSTALL_DISABLED TCPA_BASE + 11 The ability to install an owner is disabled

TCPA_INVALID_HANDLE TCPA_BASE + 12 The handle presented was invalid

TCPA_KEYNOTFOUND TCPA_BASE + 13 The target key was not found

TCPA_KEYNOTLOADED TCPA_BASE + 14 No backup key is loaded

TCPA_MIGRATEFAIL TCPA_BASE + 15 Migration authorization failed

TCPA_NO_PCR_INFO TCPA_BASE + 16 A list of PCR values was not supplied

TCPA_NOSPACE TCPA_BASE + 17 No room to load key.

TCPA_NOSRK TCPA_BASE + 18 There is no SRK set

TCPA_NOTSEALED_BLOB TCPA_BASE + 19 An encrypted blob is invalid or was not created
by this TPM

TCPA_OWNER_SET TCPA_BASE + 20 There is already an Owner

TCPA_RESOURCES TCPA_BASE + 21 The event log is full

TCPA Main Specification Page 19

Version 1.0 25 January, 2001

TCPA_SHORTRANDOM TCPA_BASE + 22 A random string was too short

TCPA_SIZE TCPA_BASE + 23 The TPM does not have the space to perform
the operation.

TCPA_WRONGPCRVAL TCPA_BASE + 25 The named PCR value does not match the
current PCR value.

TCPA_BUSY TCPA_BASE +26 The TPM is too busy to respond to the
command

TCPA Main Specification Page 20

Version 1.0 25 January, 2001

4.4 IDL

Start of informative comment:

To facilitate the definition of the messages blocks that can be properly authenticated the command
definitions use IDL. The IDL defines should only use IN, OUT and size_is.

The addition of the AUTH parameter is merely an indication in the specification as to which parameter
should be included in the authorization calculation. The actual AUTH define is merely to blank.

End of informative comment.

Parameters

Define Name Description

 in Parameter is provided to function

 out Parameter is returned from function

 in out Parameter is both an input and output parameter

 AUTH Blank marker to indicate the inclusion of the
parameter in the authorization calculation

 Size_is The size of a variable field

TCPA Main Specification Page 21

Version 1.0 25 January, 2001

4.5 TCPA_VERSION

For each structure in use externally by this specification, the following structure MUST be included.

IDL Definition

typedef struct tdTCPA_VERSION
{
 BYTE Major;
 BYTE Minor;
 BYTE RevMajor;
 BYTE RevMinor;
} TCPA_VERSION;

Parameters

Type Name Description

BYTE major This SHALL be the major version indicator. For version 1 this MUST be 0x01

BYTE minor This SHALL be the minor version indicator. For version 1 this MUST be 0x00

BYTE RevMajor This SHALL be the value of the TCPA_PERSISTENT_FLAGS.revMajor

BYTE RevMinor This SHALL be the value of the TCPA_PERSISTENT_FLAGS.revMinor

Descriptions

The version points to the version of the specification that defines the structure.

TCPA Main Specification Page 22

Version 1.0 25 January, 2001

4.6 TCPA_DIGEST

Start of informative comment:

The digest value reports the result of a hash operation. In Version 1.0 of this specification the hash
algorithm is SHA-1 with a resulting hash result being 160 bits.

End of informative comment.

Definition

typedef struct tdTCPA_DIGEST{
 BYTE digest[20];

} TCPA_DIGEST;

Parameters

Type Name Description

BYTE digest This SHALL be the actual digest information

Description

For the SHA-1 hash the digestSize parameter MUST be 20. For all TCPA hash operations, the required
algorithm is SHA-1.

For hash algorithms other than SHA-1 the digestSize parameter MUST indicate the block size of the
algorithm and MUST be 20 or greater.

Redefinitions

Typedef Name Description

TCPA_DIGEST TCPA_PCRVALUE The value inside of the PCR

TCPA_DIGEST TCPA_BACKUP_AUTH This SHALL be the digest of the concatenation TPM
Owners authorization data and the public migration
key

TCPA_DIGEST TCPA_COMPOSITE_HASH This SHALL be the hash of a list of PCR indexes
and PCR values that a key or data is bound to (See
10.4.5 for details)

TCPA_DIGEST TCPA_DIRVALUE This SHALL be the value of a DIR register

TCPA Main Specification Page 23

Version 1.0 25 January, 2001

4.7 TCPA_NONCE

Start of informative comment:

A nonce is a random value that provides protection from replay and other attacks. Many of the commands
and protocols in the specification require a nonce. This structure provides a consistent view of what a
nonce is.

End of informative comment.

Definition

typedef struct tdTCPA_NONCE{
 BYTE nonce[20];
 } TCPA_NONCE;

Parameters

Type Name Description

BYTE nonce This SHALL be the 20 bytes of random data. When created by the TPM
the value MUST be the next 20 bytes from the RNG.

TCPA Main Specification Page 24

Version 1.0 25 January, 2001

4.8 TCPA_AUTHDATA

Start of informative comment:

The authorization data is the information that is saved or passed to provide proof of ownership of an
entity.

For version 1.0 this area is always 20 bytes.

End of informative comment.

Definition

typedef struct tdTCPA_AUTHDATA{
 BYTE data[20];
 } TCPA_AUTHDATA;

Parameters

Type Name Description

BYTE data The data SHALL be the 20 bytes of information. The Owner can select any
value for the data.

Descriptions

When sending authorization data to the TPM the TPM does not validate the decryption of the data. It is
the responsibility of the entity owner to validate that the authorization data was properly received by the
TPM. This could be done by immediately attempting to open an authorization session.

Redefinitions

Typedef Name Description

TCPA_AUTHDATA TCPA_SECRET A secret value used in the authorization process, this
value is not encrypted

TCPA_AUTHDATA TCPA_ENCAUTH Encrypted auth data. The encryption mechanism is
function dependent

4.9 TCPA_PAYLOAD_TYPE

Start of informative comment:

To specify the type of payload in the TCPA_STORE_ASYM structure.

End of informative comment.

Definition

typedef unsigned char TCPA_PAYLOAD_TYPE;

TCPA_ENTITY_TYPE Values

Value Event Name Comments

‘A’ TCPA_PT_ASYM The entity is an asymmetric key

‘D’ TCPA_PT_DATA The entity is data

‘M’ TCPA_PT_MIGRATE The entity is a migration blob

TCPA Main Specification Page 25

Version 1.0 25 January, 2001

‘T’ TCPA_PT_MAINT The entity is a maintenance blob

4.10 TCPA_INTERNAL_HDR

Start of informative comment:

This structure applies header values to the encoded blob before the encryption process.

End of informative comment.

Definition

typedef struct tdTCPA_INTERNAL_HDR { // pos len total
 BYTE data; // 0 1 1
 } TCPA_INTERNAL_HDR;

Parameters

Type Name Description

BYTE data This SHALL be a magic number to ensure that RSA encryption
will always succeed. The value MUST be 0x00

TCPA Main Specification Page 26

Version 1.0 25 January, 2001

4.11 TCPA_PUBKEY

Start of informative comment:

The TCPA_PUBKEY structure contains the public portion of an asymmetric key pair. The algorithm
identification comes from the TCPA_KEY structure.

End of informative comment.

Definition

typedef struct tdTCPA_PUBKEY{
 UINT32 publen;
 [size_is(publen)] BYTE* pubkey;
 } TCPA_PUBKEY;
Parameters

Type Name Description

UINT32 Publen This SHALL be the length of the pubkey field

BYTE* pubKey This SHALL be the algorithm specific information

Descriptions

The algorithm specific information provides the public key for a specific algorithm.

The TPM MUST support TCPA_RSA_PUBKEY as the structure in parameter pubKey.

4.11.1 TCPA_RSA_PUBKEY

This structure is the pubkey parameter of TCPA_PUBKEY when the algorithmID parameter of
TCPA_KEY is TCPA_ALG_RSA. It provides the algorithm specific information for an RSA public key.

Definition

typedef struct tdTCPA_RSA_PUBKEY{
 UINT32 modulusSize;
 [size_is(modulusSize)] BYTE* modulus;
 } TCPA_RSA_PUBKEY;

Parameters

Type Name Description

UINT32 modulusSize This SHALL be the size of the modulus

BYTE* modulus This SHALL be the modulus of the RSA public key

TCPA Main Specification Page 27

Version 1.0 25 January, 2001

4.12 TCPA_PRIVKEY

Start of informative comment:

The TCPA_PRIVKEY contains the private portion of an asymmetric key pair. Most of the information is
encrypted to provide security.

End of informative comment.

Definition

typedef struct tdTCPA_PRIVKEY{
 UINT32 Privlen;
 [size_is(Privlen)] BYTE* Privkey;
 } TCPA_PRIVKEY;

Parameters

Type Name Description

UINT32 Privlen This SHALL be the length of the priv field

BYTE* PrivKey This SHALL be an encrypted TCPA_STORE_ASYMKEY

Descriptions

The TPM MUST store in the Privkey parameter only an encrypted TCPA_STORE_ASYMKEY structure.

TCPA Main Specification Page 28

Version 1.0 25 January, 2001

4.13 TCPA_KEY

Start of informative comment:

The TCPA_KEY structure provides a mechanism to transport the entire asymmetric key pair. The private
portion of the key always is encrypted.

EndStart of informative comment.:

Definition

typedef struct tdTCPA_KEY{
 TCPA_VERSION ver;
 UINT32 algorithmID;
 UINT32 parmSize;
 [size_is(parmSize)] BYTE* parms;
 TCPA_PUBKEY pubKey;
 TCPA_PRIVKEY privKey;
 } TCPA_KEY;
Parameters

Type Name Description

TCPA_VERSION ver Version number defined in section 4.5.

UINT32 algorithmID This SHALL be the type of algorithm in use

UINT32 parmSize This SHALL be the length of the parms field.

BYTE* parms This SHALL be the algorithm specific parameters.

TCPA_PUBKEY pubKey This SHALL be the public portion of the key

TCPA_PRIVKEY privKey This SHALL be the private portion of the key

Descriptions

The algorithm ID comes from the TCPA_DEFINES.H file.

The TPM MUST support algorithm TCPA_ALG_RSA.

algorithmID equals TCPA_ALG_RSA

The parms parameter MUST contain a pointer to a UNIT16 that contains the key lengthMUST contain the
key size for the key pair.

TCPA Main Specification Page 29

Version 1.0 25 January, 2001

4.14 TCPA_PCR_REGISTER

Start of informative comment:

TCPA_PCR_REGISTER is a structure used to return PCR contents and flags.

End of informative comment.

IDL Definition

typedef struct tdTCPA_PCR_REGISTER {
TCPA_PCRINDEX Index

 UINT32 Flags;
 TCPA_PCRVALUE PCR;
} TCPA_PCR_REGISTER;

Parameters

Type Name Description

TCPA_PCRINDEX Index Index of the PCR that is being read

UINT32 Flags Flags register. Currently no flags are defined, so this parameter will
always be set to zero.

TCPA_PCRVALUE PCR Set to current contents of the PCR

Note that the PCR index is explicit in this structure. TCPA-protected capabilities will set this index when
returning this structure.

TCPA Main Specification Page 30

Version 1.0 25 January, 2001

4.15 TCPA_PCR_EVENT

Start of informative comment:

Individual events are stored in the TCPA_PCR_EVENT variably sized data structure.

End of informative comment.

Definition

typedef struct tdTCPA_PCR_EVENT {
 UINT32 Length;
 TCPA_PCRINDEX PCRIndex;
 [size_is(Length)] BYTE* Event;
 TCPA_EVENTTYPE EventType;
 TCPA_PCRVALUE PcrValue
 } TCPA_PCR_EVENT;

Where the structure members are as follows:

Type Name Description

UINT32 Length Length of the event parameter

UINT32 PCRIndex Index of the PCR to which this event belongs

BYTE* Event Variable-sized BYTE array

TCPA_EVENTTYPE EventType The type of event

TCPA_PCRVALUE PcrValue The value EXTENDed into the PCR

TCPA defines the following event/supporting information types:

EventType Values

Value Event Name Comments

0 EV_CODE_CERT The TPM_Extend event is in response to loading a firmware or
software component for which a VE certificate was found. *Event
points to the VE certificate that was shipped with the platform firmware
or software (or discovered by other means). Size indicates the length
of this structure. ExtendValue is the digest of the firmware, software or
other code loaded.

1 EV_CODE_NOCERT The event was in response to loading a firmware or other software
component, but no VE certificate was found. The size is 0 and *Event
is unused. However, ExtendValue is the digest of the firmware
discovered. Absence of a VE certificate does not indicate lack of trust;
it merely indicates that a VE certificate was not available at this point
in boot. Upper-level software may be able to obtain such certificates.

2 EV_XML_CONFIG The event describes the platform configuration. The supporting
information is a platform or firmware-defined XML data structure that
indicates security-relevant hardware configuration information. The
event logged to TPM_Extend is the SHA-1 digest of the XML data
structure, and the firmware guarantees that the configuration stated in
the data structure is in effect when the firmware relinquishes control to
the next module in boot. Size is the size in bytes of the XML data
structure, and *Event points to the data structure itself. The information
may include size of physical memory, number of processors, chipset
configuration, buses discovered and processor/bus frequencies.

TCPA Main Specification Page 31

Version 1.0 25 January, 2001

Firmware vendors are free to define the XML reporting structure and
select those parameters that are important for their platforms.

3 EV_NO_ACTION The action was not performed. The corresponding DIGEST structure
MUST be 0x1 (a single binary digit in the LSB of the DIGEST
structure), and this value MUST also be logged to the TPM using the
corresponding TPM_Extend operation. A supporting data structure
may be supplied containing information that describes why the event
did not occur. If such supporting information is supplied, it should be
well-formed XML. However, this supporting information is not required.

4 EV_SEPARATOR A list of actions was complete. This event must be used if more than
one event can be logged to the TPM and upper-level software needs
to be informed that logging was completed.

5 –
(216-1)

Reserved TCPA-reserved event types

216 –
(232

 -1)
User-definable Undefined and free for general-purpose use

Additional event types may be defined for TCPA usage in specific computing platforms (for example, the
PC).

TCPA Main Specification Page 32

Version 1.0 25 January, 2001

4.16 TCPA_AUDIT_EVENT structure

Start of informative comment:

This structure reports the contents of the audit log. The entries in the log, if hashed together should equal
the current hash value held by the TPM. Mismatches indicate attacks on the system or failures to properly
audit events.

The 1.0 version has the minimal information necessary to recreate the history of audited operations.

Future versions may add additional information.

End of informative comment.

IDL Definition

typedef struct tdTCPA_AUDIT_EVENT{
 TCPA_COMMAND_CODE ordinal;
 TCPA_RESULT returncode;
} TCPA_AUDIT_EVENT;

Parameters

Type Name Description

TCPA_COMMAND_CODE ordinal Ordinal of the command

TCPA_RESULT returncode Return code for the command

TCPA Main Specification Page 33

Version 1.0 25 January, 2001

4.17 Storage Structures

4.17.1 TCPA_SEALED_DATA

Start of informative comment:

The definition of this structure is necessary to ensure the enforcement of security properties.

This structure is in use by the TPM_Seal and TPM_Unseal commands to identify the PCR index and
values that must be present to properly unseal the data.

End of informative comment.

Definition

typedef struct tdTCPA_SEALED_DATA {
 TCPA_VERSION ver;
 TCPA_MAGIC1 MagicNumber;
 BOOL IsSealedToPCR;
 UINT32 dataSize;
 TCPA_COMPOSITE_HASH digestAtCreation;
 TCPA_COMPOSITE_HASH digestAtUnseal;
 TCPA_SECRET authData;
 TCPA_DIGEST tpmProof;
 BYTE* data;
 } TCPA_SEALED_DATA;

Parameters

Type Name Description

TCPA_VERSION ver Version number defined in section 4.5.

TCPA_MAGIC1 magicNumber The bytes 0x15, 0x13, to distinguish
TCPA_SEALED_DATA blobs from other data.

BOOL IsSealedToPCR This SHALL be TRUE or FALSE. If set to
FALSE, a TPM_Unseal command will not
check digestAtUnseal against PCR values

UINT32 dataSize This SHALL be the size of the data parameter

TCPA_COMPOSITE_HASH digestAtCreation This SHALL be the composite digest value of
the values, at the time when the seal is
performed, of the PCR registers to which
parameter data is sealed.

TCPA_COMPOSITE_HASH digestAtUnseal This SHALL be the composite digest value of
the PCR register values to which parameter
data is sealed.

TCPA_SECRET authData This SHALL be the authorization data for this
value

TCPA_DIGEST tpmProof This SHALL a copy of
TPM_PERSISTENT_FLAGS.tmpProof

BYTE* data This SHALL be the data to be sealed

Descriptions

TCPA Main Specification Page 34

Version 1.0 25 January, 2001

This entire structure is encrypted during the TPM_Seal process. When the TPM_Unseal decrypts this
structure the TPM_Unseal uses the information in the structure to validate the current configuration and
release the decrypted data.

Magic number

typedef struct tdTCPA_MAGIC1{
 BYTE num[2] = 0x15,0x13
} TCPA_MAGIC1

TCPA Main Specification Page 35

Version 1.0 25 January, 2001

4.17.2 TCPA_PCR_SELECTION

Start of informative comment:

This structure provides a standard method of specifying a list of PCR registers.

End of informative comment.

Definition

typedef struct tdTCPA_PCR_SELECTION {
 TCPA_VERSION ver;
 BYTE pcrSelect[16];
 } TCPA_PCR_SELECTION;

Parameters

Type Name Description

TCPA_VERSION ver Version number defined in section 4.5. This field is
present so that if the number of available PCR registers
changes this structure can accommodate the change.

BYTE pcrSelect This SHALL be a bit map that indicates if a PCR is
active or not

Description

When the least-significant-bit of byte [N+1] of pcrSelect is butted against the most-significant-bit of byte
[N] of pcrSelect for (15>=N>=0), the contiguous bit array so formed SHALL represent PCR indices in
monotonically increasing order, starting from PCR index zero represented by bit 0 of byte 0 of pcrSelect.

The state of each bit in pcrSelect indicates whether a PCR register is selected or not. When the bit is 1
then the corresponding PCR is selected, if 0 the PCR is not selected.

This structure allows for the selection of up to 128 PCR registers.

TCPA Main Specification Page 36

Version 1.0 25 January, 2001

4.17.3 TCPA_PCR_COMPOSITE

Start of informative comment:

The composite structure provides the index and value of the PCR register to be used when creating the
value that SEALS an entity to the composite.

End of informative comment.

Definition

typedef struct tdTCPA_PCR_COMPOSITE {
 TCPA_PCR_SELECTION select;
 UINT32 valueSize;
 [size_is(valueSize)] BYTE* pcrValue;
 } TCPA_PCR_COMPOSITE;

Parameters

Type Name Description

TCPA_PCR_SELEC
TION

select This SHALL be the indication of which PCR values are
active

BYTE pcrValue This SHALL be an array of TCPA_PCR_VALUE
structures. The values come in the order specified by
the select parameter and are concatenated into a single
blob

4.17.4 TCPA_KEY_FLAGS

Start of informative comment:

This structure compacts the flag information in the TCPA_STORE_ASYMKEY structure.

End of informative comment.

Definition

typedef struct tdTCPA_KEY_FLAGS {
 unsigned IsWrappedToPCR : 1;
 unsigned Redirection : 1;
 unsigned Migratable : 1;
 unsigned Volatile : 1;
 unisgned Migration : 1;
 unsigned unused : 27;
} TCPA_KEY_FLAGS;

Parameters

Type Name Description

unsigned IsWrappedToPCr This SHALL indicate the use of PCRs. When FALSE the key
SHALL NOT be associated with PCR values. When TRUE
the key SHALL be associated with PCR value.

unsigned Redirection This SHALL indicate the use of redirected output. When
FALSE the output SHALL use the normal output
mechanism. When TRUE the output SHALL use a
redirected output mechanism.

unsigned Migratable This SHALL indicate whether the key is migratable or not.

TCPA Main Specification Page 37

Version 1.0 25 January, 2001

When FALSE the key SHALL be non-migratable. When
TRUE the key SHALL be migratable.

unsigned Volatile This SHALL indicate whether the key MUST be unloaded
when the TPM is reset. When FALSE the TPM MUST
unload the key upon reset. When TRUE the TPM MUST
NOT unload the key upon reset.

unsigned Migration This SHALL indicate that this is a migration blob

Description

For the purpose of this structure, the meaning of FALSE is the bit is off TRUE means the bit is on.

4.17.5 TCPA_ASYM_HASH

Start of informative comment:

To allow for the size of TCPA_STORE_ASYMKEY to be under the modulus of a RSA 2048 bit key the
hash value for the PCR composite digest must be a fixed length field.

This fixes the hash algorithm to SHA-1 and the size to 20 bytes.

End of informative comment.

Definition

typedef struct tdTCPA_ASYM_HASH{
 BYTE data[20];
 } TCPA_ASYM_HASH;

Parameters

Type Name Description

BYTE data The data SHALL be the 20 bytes of information

Descriptions

The data SHALL be the result of a SHA-1 hash operation.

The data SHALL be the digest in the TCPA_COMPOSITE_HASH structure associated with this key.

TCPA Main Specification Page 38

Version 1.0 25 January, 2001

4.17.6 TCPA_STORE_ASYMKEY

Start of informative comment:

The TCPA_STORE_ASYMKEY structure provides the area to identity the private key factors of a
asymmetric key.

The design of the structure is so that for RSA keys with a key size of 2048 can encrypt the structure in
one operation.

Using typical RSA notation the structure would include P, and when loading the key include the
unencrypted P*Q which would be used to recover the Q value.

To accommodate the future use of multiple prime RSA keys the specification of additional prime factors is
an optional capability.

The TPM_KEY_LEGACY key type is to allow for use in applications where both signing and encryptions
operations occur with the same key. The use of this key type is deprecated.

This structure provides the basis of defining the protection of the private key. For the complete description
of the entire encryption process, see 8.16.1.

End of informative comment.

Changes in this structure MUST be reflected in the TCPA_MIGRATE_ASYMKEY structure (section
4.17.7).

Definition

typedef struct tdTCPA_STORE_ASYMKEY { // pos len total
 TCPA_ALGORITHM_ID AlgorithmID; // 0 4 4
 TCPA_KEYUSAGE KeyUsage; // 4 2 6
 UINT32 typeTag; // 6 4 10
 UINT32 dataSize; // 10 4 14
 TCPA_SECRET auth; // 14 20 34
 TCPA_SECRET migration; // 34 20 54
 TCPA_ASYM_HASH pcrDigest; // 54 20 74
 TCPA_KEY_FLAGS keyFlags; // 74 4 78
 TCPA_AUTH_DATA_USAGE authDataUsage; // 78 2 80
 BYTE data[]; // 80 128 208
} TCPA_STORE_ASYMKEY;

Parameters

Type Name Description

TCPA_PAYLOAD_T
YPE

ptTyp This SHALL be the value from the payload type (key, data or
migrate blob)

TCPA_ALGORITHM
_ID

AlgorithmID This SHALL be the algorithm identifier for the key in use.

TCPA_KEYUSAGE KeyUsage This SHALL be the TCPA key usage that determines the
operations permitted with this key

UINT32 TypeTag This SHALL be additional information regarding the
algorithm.

UINT32 dataSize This SHALL be the size of the data parameter.

TCPA_SECRET Auth This SHALL be the authorization data necessary to
authorize the use of this value

TCPA_SECRET Migration This SHALL be the migration marker to prevent this item

TCPA Main Specification Page 39

Version 1.0 25 January, 2001

from migrating from one TPM to another. Implementation is
left to TPM manufacturers.

TCPA_ASYM_HASH PcrDigest This SHALL be the digest of the PCR indices and PCR
values to verify when loading the value. If IsWrappedToPCr
is FALSE, this value is 20 bytes, each set to 0xFF.

TCPA_KEY_FLAGS keyFlags This SHALL be the indication of migration, redirection etc.

TCPA_AUTH_DATA
_USAGE

AuthDataUsage This SHALL indicate the authorization required upon each
usage of the key

BYTE* data Actual private information dependent on key type. See
descriptions

TCPA_KEYUSAGE values

Name Value Description

TPM_KEY_SIGNING 0x0010 This SHALL indicate a signing key. The [private] key SHALL be
used for signing operations, only. This means that it MUST be a
leaf of the Protected Storage key hierarchy.

TPM_KEY_STORAGE 0x0011 This SHALL indicate a storage key. The key SHALL be used to
wrap and unwrap other keys in the Protected Storage hierarchy,
only.

TPM_KEY_IDENTITY 0x0012 This SHALL indicate an identity key. The key SHALL be used for
operations that require a TPM identity, only.

TPM_KEY_LEGACY 0x0013 This SHALL indicate a key that can perform signing and
decryption. The key MAY be used for both signing and
decryption operations.

TPM_KEY_AUTHCHANGE 0X0014 This SHALL indicate an ephemeral key that is in use during the
ChangeAuthAsym process, only.

TPM_KEY_DATA15 0x0015 This SHALL indicate a [private] key that may UNBIND a value in
PKCS#1 1.5 version format, only

TPM_KEY_DATA20 0x0016 This SHALL indicate a [private] key that may UNBIND a value in
PKCS#1 2.0 version format, only

TCPA_AUTH_DATA_USAGE values

Start of informative comment:

The method for providing universal access to an entity is to use a well known value for the authorization
data.

End of informative comment.

Name Value Description

TPM_AUTH_ALWAYS 0x01 This SHALL indicate that on each usage of the key the
authorization MUST be performed

 All other values are reserved for future use.

Descriptions

If AlgorithmID equals TCPA_ALG_RSA

TCPA Main Specification Page 40

Version 1.0 25 January, 2001

The TypeTag parameter SHALL indicate the number of prime factors in use.

All migratable keys MUST be RSA keys with 2 prime factors.

When TypeTag equals 2

The TPM SHALL store and encrypt one of the prime factors in the TCPA_STORE_ASYMKEY
structure. The data parameter MUST contain the prime factor for the key. Upon loading of the key the
TPM calculates the other prime factor by dividing the modulus by this value.

When TypeTag is greater than 2

The TPM MAY support RSA keys with more than 2 prime factors.

Encryption

Start of informative comment:

The design of the TCPA_STORE_ASYMKEY structure holds a 2048 bit RSA key one encryption
operation by a 2048 bit RSA key. This sets the maximum size of the TCPA_STORE_ASYMKEY structure
as 208 bytes.

The encoding of the area by RSAES_OAEP provides protections during migration.

End of informative comment.

The design of the TCPA_STORE_ASYMKEY structure is such that for an RSA key of 2048 bits the key
can be encrypted in one operation.

The TPM SHALL use the RSAES_OAEP protocol from PKCS#1 version 2.0.

The following members of the ASYMKEY structure match the parameters in OAEP as follows:

OAEP Parameters

OAEP TCPA_STORE_ASYMKEY Description

SEED The TPM SHALL provide the next 20 bytes
from the TPM RNG

P label ‘TCPA’ – a four (4) byte string

M The TCPA_STORE_ASYMKEY area The information to encrypt

TCPA Main Specification Page 41

Version 1.0 25 January, 2001

4.17.7 TCPA_MIGRATE_ASYMKEY

Start of informative comment:

The TCPA_MIGRATE_ASYMKEY structure provides the area to identity the private key factors of a
asymmetric key while the key is migrating between TPM’s.

The basis for this structure is the TCPA_STORE_ASYMKEY structure. The only difference between the
two structures is the removal in this structure of the Migration field.

This structure provides the basis of defining the protection of the private key. For the complete description
of the entire encryption process, see 7.2.11.

End of informative comment.

Definition

typedef struct tdTCPA_MIGRATE_ASYMKEY { // pos len total
 UINT32 AlgorithmID; // 0 4 4
 TCPA_KEYUSAGE KeyUsage; // 4 2 6
 UINT32 typeTag; // 6 4 10
 UINT32 dataSize; // 10 4 14
 TCPA_SECRET auth; // 14 20 34
 TCPA_ASYM_HASH pcrDigest; // 34 20 54
 TCPA_KEY_FLAGS keyFlags; // 54 4 58
 TCPA_AUTH_DATA_USAGE authDataUsage; // 58 2 60
 BYTE data[]; // 60 128 188
} TCPA_MIGRATE_ASYMKEY;

Parameters

Type Name Description

 All parameters All fields MUST match the TCPA_STORE_ASYMKEY
(section 4.17.6) fields with the exception of the Migration
field which is absent.

TCPA Main Specification Page 42

Version 1.0 25 January, 2001

4.17.8 TCPA_MAINTENANCE_ASYMKEY

Start of informative comment:

End of informative comment.

Definition

typedef struct tdTCPA_MAINTENANCE_ASYMKEY { // pos len total
 TCPA_NONCE tpmProof; // 0 20 20
 BYTE data[]; // 20 128 148
} TCPA_MAINTENANCE_ASYMKEY;

Parameters

Type Name Description

TCPA_NONCE tpmProof This SHALL be a copy of the
TCPA_PERSISTENT_FLAGS.tpmProof

BYTE* data This SHALL be one of the primes of the SRK.

TCPA Main Specification Page 43

Version 1.0 25 January, 2001

4.18 TCPA_AUTH

Start of informative comment:

The authorization structure provides a standard method to represent the information that all functions
requiring authorization need.

The handle is always just opaque data that the TPM uses to index to the session information.

The structure is input to the IDL file and hence all data has a set format.

It is the responsibility of the caller to properly fill out the authorization structure and properly generate the
HMAC for the command. The HMAC always includes all fields in the structure except for the HMAC hash
result.

End of informative comment.

IDL Definition

typedef struct tdTCPA_AUTH{
 TCPA_AUTHHANDLE authHandle;
 TCPA_NONCE nonce;
 TCPA_DIGEST digest;
 BOOL continueFlag;
 }TCPA_AUTH;

Parameters

Type Name Description

TCPA_AUTHHANDLE authHandle The handle that the TPM uses to locate the session
information that it maintains regarding this authorization
session.

TCPA_NONCE nonce The nonce from the sender of the structure. For
incoming packets, the caller sets this value. For outgoing
packets, this value is set by the TPM.

TCPA_DIGEST digest The result of the HMAC calculation.

BOOL continueFlag Defines whether (TRUE) or not (FALSE) the TPM keeps
the session open after execution of the command. May
be set by TPM to FALSE in response to certain
operations.

Description

The TPM MUST read an incoming TCPA_AUTH structure and generate the outgoing TCPA_AUTH
structure.

TCPA Main Specification Page 44

Version 1.0 25 January, 2001

4.19 TCPA_CERTIFY_INFO Structure

Start of informative comment:

When the TPM certifies a key, it must provide a signature with a TPM identity key on information that
describes that key. This structure provides the mechanism to do so.

End of informative comment.

IDL Definition

typedef struct tdTCPA_CERTIFY_INFO{
 TCPA_VERSION Version;
 TCPA_KEY_FLAGS keyFlags;
 UINT32 typeTag;
 TCPA_AUTH_DATA_USAGE authDataUsage;
 TCPA_KEYUSAGE KeyUsage;
 TCPA_COMPOSITE_HASH DigestValue;
 TCPA_DIGEST pubkeyDigest;
 TCPA_NONCE Data;
 TCPA_PCR_SELECTION pcrList;
};
Parameters

Type Name Description

TCPA_VERSION Version TCPA version structure; section 4.5.

TCPA_KEY_FLAGS keyFlags This SHALL be set to the same value as the corresponding
parameter in the TCPA_STORE_ASYM structure that
describes the private part of the public key that is being
certified.

UINT32 typeTag This SHALL be set to the same value as the corresponding
parameter in the TCPA_STORE_ASYM structure that
describes the private part of the public key that is being
certified.

TCPA_AUTH_DATA
_USAGE

authDataUsa
ge

This SHALL be set to the same value as the corresponding
parameter in the TCPA_STORE_ASYM structure that
describes the private part of the public key that is being
certified.

TCPA_KEYUSAGE KeyUsage This SHALL be set to the same value as the corresponding
parameter in the TCPA_STORE_ASYM structure that
describes the private part of the public key that is being
certified.

TCPA_DIGEST DigestValue This SHALL be the result of the composite hash algorithm
using pcrList for input. If the public key that is being certified is
not bound to any PCRs, this SHALL be set to
TCPA_CERTIFY_NOPCR.

TCPA_DIGEST pubDigest This SHALL be the hash of the public key being certified.

TCPA_NONCE Data This SHALL externally provided data.

TCPA_PCR_SELEC
TION

pcrList This SHALL be the list of PCR indices that were used to
compute the composite hash in DigestValue. This SHALL be
an empty list (pcrList.pcrCount set to 0) when the public key
that is being certified is not bound to any PCRs.

TCPA Main Specification Page 45

Version 1.0 25 January, 2001

4.20 TCPA_QUOTE_INFO Structure

Start of informative comment:

This structure provides the mechanism for the TPM to quote the current values of a list of PCRs.

End of informative comment.

IDL Definition

typedef struct tdTCPA_QUOTE_INFO{
 TCPA_VERSION Version;
 BYTE fixed[4];
 TCPA_COMPOSITE_HASH DigestValue;
 TCPA_DIGEST ExternalData,
} TCPA_QUOTE_INFO;

Parameters

Type Name Description

TCPA_VERSION Version TCPA version structure; section 4.5.

BYTE fixed This SHALL always be the string ‘QUOT’

TCPA_COMPOSITE_HASH DigestValue This SHALL be the result of the composite hash
algorithm using the current values of the requested
PCR indices.

TCPA_DIGEST ExternalData 160 bits of externally supplied data

TCPA Main Specification Page 46

Version 1.0 25 January, 2001

4.21 TCPA_KEY_INFO

Informative comment

This structure provides the information regarding a key in response to a TPM_GetCapability call.

End of informative comment.

typedef struct tdTCPA_KEY_INFO{
 TCPA_VERSION Version;
 TCPA_KEY info;
 UINT32 typeTag;
 TCPA_KEYUSAGE KeyUsage;
 BOOL parentPCRStatus;
 TCPA_AUTH_DATA_USAGE authDataUsage;
 TCPA_PCR_SELECTION pcrList;
} TCPA_KEY_INFO;

Parameters

Type Name Description

TCPA_VERSION Version TCPA version structure; section 4.5.

TCPA_KEY info The input structure contains all parameters except
pubkey and privkey (which are NULL), to specify the
size and type of the new key.

UINT32 typeTag This SHALL be set to the same value as the
corresponding parameter in the TCPA_STORE_ASYM
structure that describes the private part of the public key
that is being certified.

TCPA_KEYUSAGE KeyUsage This SHALL be set to the same value as the
corresponding parameter in the TCPA_STORE_ASYM
structure that describes the private part of the public key
that is being certified.

BOOL parentPCRStatus This SHALL indicate if any parent key was wrapped to a
PCR

TCPA_AUTH_DATA_
USAGE

authDataUsage This SHALL be set to the same value as the
corresponding parameter in the TCPA_STORE_ASYM
structure that describes the private part of the public key
that is being certified.

TCPA_PCR_SELECT
ION

pcrList This SHALL be the list of PCR indices that were used to
compute the composite hash in DigestValue. This
SHALL be an empty list (pcrList.pcrCount set to 0) when
the public key that is being certified is not bound to any
PCRs.

TCPA Main Specification Page 47

Version 1.0 25 January, 2001

4.22 Flag Structures

Informative comment

The TPM maintains flags in volatile and non-volatile areas. These flags indicate the status of enabling,
ownership and activation.

The setting of these flags follows the same rule, either the TPM Owner authorizes the setting of the flag
or the command requires physical presence.

The physical presence assertion definition is a manufacturer option. There are many methods of making
the assertion and manufacturers can select any number of options. The underlying theme is that no
remote entity should be able to change the status of the TPM without either knowledge of the TPM
Ownership authentication or physical presence next to the platform.

One method of providing the physical presence assertion is to have the TPM accept commands during a
period when the operation of the platform is constrained. In a PC, the method might operate during the
POST and require input from the user via the keyboard. The TPM would allow access to the command
until execution of some critical point and the POST process informed the TPM that it should no longer
accept the commands.

End of informative comment.

TCPA Main Specification Page 48

Version 1.0 25 January, 2001

4.22.1 TCPA_PERSISTENT_FLAGS Structure

IDL Definition

typedef struct tdTCPA_PERSISTENT_FLAGS{
 BOOL disable;
 BOOL ownership;
 BOOL deactivated;
 BOOL readPubek;
 BOOL disableOwnerClear;
 BOOL AllowMaintenance;
 BYTE revMajor;
 BYTE revMinor;
 TCPA_NONCE tpmProof;
 TCPA_PUBKEY ManufacturerPub;
} TCPA_PERSISTENT_FLAGS;

Type

TPM shielded location

Parameters

Type Name Description

BOOL disable The state of the disable flag. See 8.13

BOOL ownership The ability to install an owner. See 8.12

BOOL deactivated The state of the active flag. See 8.14

BOOL readPubek The ability to read the PUBEK without owner
authorization. See 9.2.2

BOOL disableOwnerClear If the owner authorized clear commands are active. See
8.9.6

BOOL AllowMaintenance Can the TPM Owner create a maintenance archive. See
7.2.14

BYTE revMajor This SHALL be the TPM major revision indicator. This
SHALL only be set by the TPME.

BYTE revMinor This SHALL be the TPM minor revision indicator. This
SHALL only be set by the TPME.

TCPA_NONCE tpmProof This SHALL be the random number that each TPM
maintains to validate blobs in the SEAL and other
processes.

TCPA_PUBKEY ManufacturerPub This SHALL be the manufacturers public key to use in the
maintenance operations. If maintenance is not available in
the TPM this field may be null.

Description

The data structure TCPA_PERSISTENT_FLAGS SHALL exist only in a TPM shielded-location and
SHALL be non-volatile.

Disable flag

TCPA Main Specification Page 49

Version 1.0 25 January, 2001

If disable has the value of TRUE, all commands except TPM_GetCapability, TPM_Extend and the TPM
enabling capabilities SHALL return the value TCPA_DISABLED.

Ownership flag

If ownership has the value of FALSE, then any attempt to install an owner fails with the error value
TCPA_INSTALL_DISABLED.

Deactivated flag

This flag sets the state of TCPA_VOLATILE_FLAGS.deactivated upon initialization.

readPubek

If readPubek is TRUE then the TPM_ReadPubek will return the PUBEK, if FALSE the command will
return TCPA_DISABLED_CMD.

DisableOwnerClear

If disableOwnerClear is TRUE then the clear commands requiring owner authorization will return
TCPA_CLEAR_DISABLED, if false the commands will execute.

TCPA Main Specification Page 50

Version 1.0 25 January, 2001

4.22.2 TCPA_VOLATILE_FLAGS Structure

IDL Definition

typedef struct tdTCPA_VOLATILE_FLAGS{
 BOOL deactivated;
 BOOL disableForceClear;
} TCPA_VOLATILE_FLAGS;

Type

TPM shielded location

Parameters

Type Name Description

BOOL Deactivated The state of the active flag.

BOOL DisableForceClear The state of the force clear flag.

Action

The data structure TCPA_VOLATILE_FLAGS SHALL exist only in a TPM shielded-location and SHALL
be volatile.

Deactivated flag

The TPM SHALL set the state of the TCPA_VOLATILE_FLAGS.deactivated to the state of
TCPA_PERSISTENT_FLAGS.deactivated on each startup.

If deactivated is TRUE the following commands will execute with their normal protections

• TPM_GetCapability

• TPM_Extend

• TPM_TakeOwnership

• TPM enabling and disabling

• TPM activation and deactivation

All other commands SHALL return TCPA_DEACTIVATED.

DisableForceClear

If disableForceClear is TRUE then the TPM_ForceClear command returns TCPA_CLEAR_DISABLED, if
FALSE then the command will execute.

TCPA Main Specification Page 51

Version 1.0 25 January, 2001

4.23 Credentials

Start of informative comment:

The credentials in use for a TCPA system interlock. The following diagram shows the relationship
between the credentials.

End of informative comment.

TCPA Main Specification Page 52

Version 1.0 25 January, 2001

4.23.1 Evidence of Subsystem Endorsement

Start of informative comment:

The purpose of TPM_ENDORSEMENT_CREDENTIAL is to provide evidence that a TPM correctly
implements the protected capabilities and shielded locations of the TCPA specification.

TPM_ENDORSEMENT_CREDENTIAL is an attestation that a genuine TCPA Trusted Platform Module
created the PUBEK that is referenced in TPM_ENDORSEMENT_CREDENTIAL.
TPM_ENDORSEMENT_CREDENTIAL contains information that a Privacy CA may use in judging
whether the Privacy CA will attest to an identity of that TCPA Trusted Platform Module.
TPM_ENDORSEMENT_CREDENTIAL contains information that the Privacy CA must use in attesting to
an identity of that TCPA Trusted Platform Module.

TPM_ENDORSEMENT_CREDENTIAL is tagged with TCPA_version so as to indicate the version of the
capability that created the PUBEK at the time the key was generated. This may be useful in the event that
capabilities are field-upgraded.

• PUBEK will be required by the Privacy CA when the Privacy CA attests to a TCPA Trusted Platform
Module identity (TPM identity).

• “TCPA Trusted Platform Module Endorsement” identifies a data structure as
TPM_ENDORSEMENT_CREDENTIAL and enables the TPME to sign the data with a key that is not
exclusively reserved for signing TPM_ENDORSEMENT_CREDENTIAL.

• tpme_reference is the means of referencing the TPME, may be required by the Privacy CA when
judging whether the Privacy CA will attest to a TCPA TPM identity, and is required by the Privacy CA
when attesting to a TCPA TPM identity.

• tpm_model is the means of referencing the type of implementation of protected capabilities and
shielded locations. It may be required by the Privacy CA when judging whether the Privacy CA will
attest to a TCPA TPM identity and is required by the Privacy CA when attesting to a TCPA TPM
identity.

• tpm_distributed_validation is a convenient immediate reference to the security properties of the
implementation of protected capabilities and shielded locations. It may be required by the Privacy CA
when judging whether the Privacy CA will attest to a TCPA TPM identity and is required by the
Privacy CA when attesting to a TCPA TPM identity.

• Access to the TPM_ENDORSEMENT_CREDENTIAL must be restricted to entities that have a “need
to know.” This is for reasons of privacy.

End of informative comment.

Description

struct TPM_ENDORSEMENT_CREDENTIAL = {
 BYTE label = “TCPA Trusted Platform Module Endorsement”
 TCPA_PUBKEY public_endorsement_key
 REFERENCE tpm_model
 REFERENCE tpm_distributed_validation
 REFERENCE tpme_reference
 TCPA_VERSION TCPA_version
 SIGNATURE signature_value}

This is an abstract definition, section 9.5.1 contains the concrete
representation.

Parameters

Type Name Description

TCPA Main Specification Page 53

Version 1.0 25 January, 2001

BYTE Label This SHALL be the ASCII characters
“TCPA Trusted Platform Module
Endorsement”

TCPA_PUBKEY public_endorsement_key This SHALL be the PUBEK returned by a
TPM_CreateEndorsementKeyPair
command.

REFERENCE tpm_model This SHALL be a reference to the type of
implementation of protected capabilities
and shielded locations that created the
PUBEK, plus a reference to the identity of
the manufacturer of that implementation.

REFERENCE tpm_distributed_validation This SHALL be a reference to fields that
indicate the security qualities of the
implementation of protected capabilities
and shielded locations that created the
PUBEK.

REFERENCE tpme_reference This SHALL be an unambiguous
indication of the identity of the (TPM)
entity that attests that the implementation
of protected capabilities and shielded
locations conforms to the TCPA
specification.

VERSION TCPA_version This SHALL be the version specified in
section 4.5.

SIGNATURE signature_value This SHALL be the signature over all
previous fields in
TPM_ENDORSEMENT_CREDENTIAL,
using the private key of the tpme-
reference.

When an entity presents evidence to a Privacy CA that an implementation of protected capabilities and
shielded locations conforms to the TCPA specification, that evidence SHALL include the data in the data
structure TPM_ENDORSEMENT_CREDENTIAL.

A (TPME) entity SHALL NOT create the data structure TPM_ENDORSEMENT_CREDENTIAL unless the
entity is satisfied that the PUBEK referenced in TPM_ENDORSEMENT_CREDENTIAL was returned in
response to a TPM_CreateEndorsementKeyPair command by an implementation of protected capabilities
and shielded locations that meets the TCPA specification.

If the data structure TPM_ENDORSEMENT_CREDENTIAL is stored on a platform after an Owner has
taken ownership of that platform, it SHALL exist only in storage to which access is controlled and is
available to authorized entities.

TCPA Main Specification Page 54

Version 1.0 25 January, 2001

4.23.2 Evidence of Platform Endorsement

Start of informative comment:

The purpose of platform_credential is to provide evidence that a platform correctly incorporates an
implementation of the protected capabilities and shielded locations of a TCPA Subsystem.

Platform_credential is an attestation that a platform contains a genuine TCPA Subsystem.
Platform_credential contains information that a Privacy CA may use in judging whether the Privacy CA
will attest to an identity of that TCPA Subsystem. Platform_credential contains information that the
Privacy CA must use in attesting to an identity of that TCPA Trusted Platform Subsystem.

Platform_credential is tagged with TCPA_version so as to indicate the version of the capability that
created the PUBEK at the time that the key was generated. This may be useful in the event that
capabilities are field-upgraded.

• TPM-reference is the means of referencing the specific implementation of protected capabilities and
shielded locations that is incorporated into the platform. It will be required by the Privacy CA when
judging whether the Privacy CA will attest to a TCPA TPM identity

• The conformance-credential contains a set of conformance UIDs that unambiguously indicate the
conformance to the TCPA specification of the TPM that is incorporated into the platform. These UIDs
are the “tpm-protection-profile” and “tpm-security-target”. The conformance credential also contains a
set of conformance UIDs that unambiguously indicate the conformance to the TCPA specification of
the means by which the platform incorporates an implementation of the TPM, the implementation of
the root-of-trust-for-measurement, and the means by which the platform incorporates an
implementation of the root-of-trust-for-measurement. These UIDs are the “foundation-protection-
profile” and “foundation-security-target”. All these UIDs will be required by the Privacy CA when
judging whether the Privacy CA will attest to a TCPA TPM identity.

• “TCPA Trusted Platform Endorsement” identifies a data structure as platform_credential and enables
the Platform Entity (PE) to sign the data with a key that is not exclusively reserved for signing
platform_credential.

• PE_reference is the means of referencing the PE. It may be required by the Privacy CA when judging
whether the Privacy CA will attest to a TCPA TPM identity.

• platform_model is the means of referencing the type of platform. The reference includes the
implementation of TCPA foundations in the platform. The foundations include the root-of-trust-for
measurement that is incorporated into the platform, the method of incorporation of the RTM, and the
method of incorporation of the TPM. It may be required by the Privacy CA when judging whether the
Privacy CA will attest to a TCPA TPM identity and is required by the Privacy CA when attesting to a
TCPA TPM identity.

• platform_distributed_validation is a convenient immediate reference to the security properties of the
platform. The reference includes the implementation of TCPA foundations in the platform. The
foundations include the RTM that is incorporated into the platform, the method of incorporation of the
RTM, and the method of incorporation of the TPM. It may be required by the Privacy CA when
judging whether the Privacy CA will attest to a TCPA TPM identity and is required by the Privacy CA
when attesting to a TCPA TPM identity.

Access to the platform_credential must be restricted to entities that have a “need to know.” This is for
reasons of privacy.

End of informative comment.

Description

When an entity presents evidence to a Privacy CA that a platform conforms to the TCPA specification,
that evidence SHALL include the data in the data structure platform_credential.

TCPA Main Specification Page 55

Version 1.0 25 January, 2001

An entity (PE) SHALL NOT create the data structure platform_credential unless the entity is satisfied that
the platform conforms to the conformance credential referenced inside platform_credential and contains
the TPM referenced inside platform_credential.

Definition

struct PLATFORM_CREDENTIAL ={
 ASCII_STRING “TCPA Trusted Platform Endorsement”
 REFERENCE tpm-credential-reference
 REFERENCE conformance-credential-reference
 REFERENCE platform_model
 REFERENCE platform_distributed_validation
 REFERENCE pe-reference
 TCPA_VERSION TCPA_version
 SIGNATURE signature_value}

This is an abstract definition, section 9.5.2 contains the concrete
representation.

Parameters

Type Name Description

ASCII_STRING “TCPA Trusted Platform
Endorsement”

This SHALL be the ASCII string “TCPA
Trusted Platform Endorsement”

REFERENCE tpm-credential-reference This SHALL be an unambiguous indication
of the endorsement credential of the TPM
incorporated into the platform.

REFERENCE conformance-credential-
reference

This SHALL be an unambiguous indication
of the conformance UIDs that attest that the
design of the platform conforms to the
TCPA specification.

REFERENCE platform_model This SHALL be a reference to the type of
the platform, including the TCPA
foundations in the platform, plus a reference
to the identity of the manufacturer of that
platform.

REFERENCE platform_distributed_valid
ation

This SHALL be fields that indicate the
general security qualities of the platform.

REFERENCE pe-reference This SHALL be an unambiguous indication
of the identity of the (platform) entity that
attests to the design and construction of the
platform.

TCPA_VERSION TCPA_version This SHALL be the version specified in
section 4.5.

SIGNATURE signature_value This SHALL be the signature over all
previous fields in platform_credential, using
the private key of the pe-reference.

If the data structure platform_credential is stored on a platform after an Owner has taken ownership of
that platform, it SHALL exist only in storage to which access is controlled and is available to authorized
entities.

TCPA Main Specification Page 56

Version 1.0 25 January, 2001

4.23.3 Evidence of Platform Conformance

Start of informative comment:

The purpose of conformance_credential is to provide evidence that the design of the Subsystem in a
platform correctly conforms to the TCPA specification, and that the design of the method of incorporation
of the Subsystem in the platform correctly conforms to the TCPA specification.

Conformance_credential is an attestation that the overall design of a platform satisfies the TCPA
specification. Conformance_credential contains information that a Privacy CA may use in judging whether
the Privacy CA will attest to an identity of that TCPA Subsystem. Conformance_credential contains
information that the Privacy CA must use in attesting to an identity of that TCPA Trusted Platform
Subsystem.

Conformance_credential is tagged with TCPA_version so as to indicate the version of the capability that
created the PUBEK at the time that the key was generated. This may be useful in the event that
capabilities are field-upgraded.

Conformance_credential contains identifiers (UIDs) that indicate the protection profile and the security
target of both the TPM and the RTM, and the methods by which they are incorporated into the platform.

End of informative comment.

Description

When an entity presents evidence to a Privacy CA that a platform conforms to the TCPA specification,
that evidence SHALL include the data in the data structure conformance_credential.

A (conformance) entity SHALL NOT create the data structure conformance_credential unless the entity is
satisfied that the design of both the Subsystem and its incorporation into the platform are accurately and
unambiguously represented by the information in conformance_credential.

typedef struct CONFORMANCE_CREDENTIAL ={
 ASCII_STRING “TCPA Conformance Credential”
 CONFORM_UID tpm_pp
 CONFORM_UID tpm_st
 CONFORM_UID foundation_pp
 CONFORM_UID foundation_st
 REFERENCE ce_reference
 TCPA_VERSION TCPA_version
 SIGNATURE signature
}

This is an abstract definition; section 9.5 contains the concrete representation.

Parameters

Type Name Description

ASCII_STRING “TCPA Conformance
Credential”

This SHALL be the ASCII string “TCPA
Conformance Credential”

CONFORM_UID tpm_pp This SHALL be the UID that unambiguously
identifies the protection profile of the TPM

CONFORM_UID tpm_st This SHALL be the UID that unambiguously
identifies the security target of the TPM

CONFORM_UID foundation_pp This SHALL be the UID that unambiguously
identifies the protection profile of the TCPA
foundations in the platform.

CONFORM_UID foundation_st This SHALL be the UID that unambiguously
identifies the security target of the TCPA

TCPA Main Specification Page 57

Version 1.0 25 January, 2001

identifies the security target of the TCPA
foundations in the platform.

REFERENCE ce_reference This SHALL be an unambiguous indication of
the identity of the (Conformance) entity that
attests to the overall design of the platform.

TCPA_VERSION TCPA_version This SHALL be the version specified in section
4.5.

SIGNATURE signature_value This SHALL be the signature over all previous
fields in CONFORMANCE_CREDENTIAL,
using the private key of the ce_reference.

TCPA Main Specification Page 58

Version 1.0 25 January, 2001

4.23.4 TCPA Validation Data

Start of informative comment:

The purpose of TCPA Validation Data is to state the values of integrity metrics that should be obtained
when the component described by the validation data is working properly.

TCPA Validation Data identifies a data structure as validation_data and enables the PE to sign the data
with a key that is not exclusively reserved for signing validation_data.

End of informative comment.

All components that influence the software environment in a platform SHOULD have corresponding
validation data.

The representation of a component SHALL reflect the way that the component influences the software
environment in a platform. All representations SHALL include a description of the manufacturer, the
common name of the component, the version of the component, and a field that describes the security
qualities of the component.

The representation of a component SHALL NOT in any way provide information that exposes the identity
of a specific component.

The validation data of a component SHALL be validation_data

IDL Description

typedef struct VALIDATION_DATA ={
 ASCII_STRING “TCPA Validation Data”
 ASCII_STRING component_manufacturer,
 ASCII_STRING component_name,
 ASCII_STRING component_version,
 DIGEST instruction_digest,
 REFERENCE component_distributed_validation,
 REFERENCE ve_reference,
 TCPA_VERSION TCPA_version,
 SIGNATURE validation_data_signature_value}

This is an abstract definition; section 9.5.4 contains the concrete representation.

Parameters

Type Name Description

ASCII_STRING “TCPA Validation Data” This SHALL be the ASCII string “TCPA
Validation Data.”

ASCII_STRING component_manufacturer This SHALL be an ASCII string stating the
name of the manufacturer of the
component.

ASCII_STRING component_name This SHALL be an ASCII string stating the
common name of the component.

ASCII_STRING component_version This SHALL be an ASCII string stating the
version of the component.

DIGEST instruction_digest This SHALL be a digest of any
instructions in the component that are
intended to execute on the main
computing engine of the platform.

REFERENCE component_distributed_
validation

This SHALL be a convenient immediate
reference to the security properties of the

TCPA Main Specification Page 59

Version 1.0 25 January, 2001

reference to the security properties of the
component.

REFERENCE ve_reference This SHALL be an unambiguous
indication of the identity of the (validation)
entity that attests to the validation data.

TCPA_VERSION TCPA_version This SHALL be the version specified in
section 4.5.

SIGNATURE validation_data_signat
ure_value

This SHALL be the result of signing all
fields (except this field) in
VALIDATION_DATA using the signature
(private) key of VE_reference.

4.23.5 Evidence of Trusted Platform Module Identity

Start of informative comment:

The data in TPM_IDENTITY_CREDENTIAL is presented whenever an entity requires proof that an
anonymous identity belongs to a genuine TCPA Subsystem.

TPM_IDENTITY_CREDENTIAL may be accompanied by other data, depending upon circumstances.
When presented in response to an integrity challenge, it may be accompanied by conventional certificates
and validation data, for example.

TPM_IDENTITY_CREDENTIAL is tagged with TCPA_version so as to indicate the version of the
capability that created the identity key at the time that the key was generated. This may be useful in the
event that capabilities are field-upgraded.

The phrase “TCPA Trusted Platform Module identity” identifies a data structure as a Trusted Platform
Module identity and enables the Privacy CA to sign the data with a key that is not exclusively reserved for
signing TPM identities.

Access to the TPM_IDENTITY_CREDENTIAL must be restricted to entities that have a “need to know.”
This is for reasons of privacy.

End of informative comment.

Description

When an entity presents evidence that an identity belongs to a Subsystem, that evidence SHALL include
the data in the data structure TPM_IDENTITY_CREDENTIAL.

struct TPM_IDENTITY_CREDENTIAL ={
 ASCII_STRING “TCPA Trusted Platform Identity”
 UNICODE identityLabel
 TCPA_PUBKEY identityPubKey
 REFERENCE tpm_model
 REFERENCE tpm_distributed_validation
 CONFORM_UID tpm_pp
 CONFORM_UID tpm_st
 REFERENCE platform_model
 REFERENCE platform_distributed_validation
 CONFORM_UID foundation_pp
 CONFORM_UID foundation_st
 REFERENCE p-ca_reference
 TCPA_VERSION TCPA_version
 SIGNATURE signature_value}

This is an abstract definition; section 9.5.5 contains the concrete representation.

TCPA Main Specification Page 60

Version 1.0 25 January, 2001

Parameters

Type Name Description

ASCII_STRING “TCPA Trusted Platform
Module Identity”

This SHALL be the ASCII string “TCPA
Trusted Platform Identity.”

UNICODE identityLabel This SHALL be a textual string associated
with the TPM identity.

TCPA_PUBKEY identityPubKey This SHALL be a public key associated with
the TPM identity.

REFERENCE tpm_model This SHALL be a reference to the type of TPM
in the platform, plus a reference to the identity
of the manufacturer of TPM.

REFERENCE tpm_distributed_validation This SHALL be fields that indicate the security
qualities of the TPM in the platform.

CONFORM_UID tpm_pp This SHALL be the UID that unambiguously
identifies the protection profile of the TPM

CONFORM_UID tpm_st This SHALL be the UID that unambiguously
identifies the security target of the TPM

REFERENCE platform_model This SHALL be a reference to the type of the
platform, including the TCPA foundations in
the platform, plus a reference to the identity of
the manufacturer of that platform.

REFERENCE platform_distributed_valid
ation

This SHALL be fields that indicate the security
qualities of the platform.

CONFORM_UID foundation_pp This SHALL be the UID that unambiguously
identifies the protection profile of the TCPA
foundations in the platform.

CONFORM_UID foundation_st This SHALL be the UID that unambiguously
identifies the security target of the TCPA
foundations in the platform.

REFERENCE p-ca_reference This SHALL be an unambiguous indication of
the identity of the (Privacy CA) entity that
attests to the TPM identity.

TCPA_VERSION TCPA_version This SHALL be the version specified in
section 4.5.

SIGNATURE signature_value This SHALL be the signature over all previous
fields in TPM_IDENTITY_CREDENTIAL,
using the private key of the p-ca_reference.

If the data structure TPM_IDENTITY_CREDENTIAL is stored on a platform after an Owner has taken
ownership of that platform, it SHALL exist only in storage to which access is controlled and is available to
authorized entities.

TCPA Main Specification Page 61

Version 1.0 25 January, 2001

4.24 TCPA_ALGORITHM_PARMS

Start of informative comment:

This provides a standard mechanism to define the algorithm parameters

End of informative comment.

Definition

typedef struct tdTCPA_ALGORITHM_PARMS {
 UINT32 algorithmID;
 UINT32 parmSize;
 [size_is(parmSize)] BYTE* parms;
} TCPA_ALGORITHM_PARMS;

Parameters

Type Name Description

UINT32 algorithmID This SHALL be the algorithm in use

UINT32 parmSize This SHALL be the size of the parms field in bytes

BYTE* parms This SHALL be the parameter information

Descriptions

Name Value Description parm Contents

TCPA_ALG_RSA 0x0000001 The RSA algorithm. UINT32 Size of modulus

TCPA_ALG_DES 0x0000002 The DES algorithm IV value for CBC calculation

TCPA_ALG_3DES 0X0000003 The 3DES algorithm IV value for CBC calculation

TCPA_ALG_AES 0x0000004 The AES algorithm IV value for CBC calculation

TCPA_ALG_SHA 0x0000005 The SHA1 algorithm ignored

TCPA_ALG_HMAC 0x0000006 The HMAC algorithm ignored

algorithmID equals TCPA_ALG_RSA

The parms field contains a UINT32 that specifies the size of the RSA key in bits.

algorithmID equals TCPA_ALG_DES, TCPA_ALG_3DES, TCPA_ALG_AES

The parms field contains a TCPA_SYMMETRIC_KEY that is the IV value for a CBC calculation.

TCPA Main Specification Page 62

Version 1.0 25 January, 2001

4.25 Identity Structures

4.25.1 TCPA_IDENTITY_CONTENTS

Start of informative comment:

The TPM_MakeIdentity uses this structure and the signature of this structure goes to a privacy CA during
the certification process.

End of informative comment.

Definition

typedef struct tdTCPA_IDENTITY_CONTENTS {
 TCPA_VERSION ver
 UINT32 ordinal,
 UINT32 labelSize,
 TCPA_PUBKEY caPubKey,
 TCPA_PUBKEY identityPubKey,
 [size_is(labelSize)] BYTE* identityLabel;
} TCPA_IDENTITY_CONTENTS;

Parameters

Type Name Description

TCPA_VERSION ver This SHALL be the version specified in section 4.5.

UINT32 ordinal This SHALL be the ordinal of the TPM_MakeIdentity
command.

UINT32 labelSize This SHALL be the size of the identityLabel field

TCPA_PUBKEY CaPubKey This SHALL be the caPubKey field in the calling
TPM_MakeIdentity command.

TCPA_PUBKEY identityPubKey This SHALL be the public key structure of the identity key

BYTE* identityLabel This SHALL be the label for the identityPubKey

TCPA Main Specification Page 63

Version 1.0 25 January, 2001

4.25.2 TCPA_SYMMETRIC_KEY

Start of informative comment:

This structure describes a symmetric key.

End of informative comment.

Definition

typedef struct tdTCPA_SYMMETRIC_KEY {
 UINT16 size;
 [size_is(size)] BYTE* data;
} TCPA_SYMMETRIC_KEY;

Parameters

Type Name Description

UINT16 size This SHALL be the size of the data parameter in bytes

BYTE* data This SHALL be the symmetric key data

TCPA Main Specification Page 64

Version 1.0 25 January, 2001

4.25.3 TCPA_IDENTITY_REQ

Start of informative comment:

This structure is sent by the TSS to the Privacy CA to create the identity credential.

End of informative comment.

Definition

typedef struct tdTCPA_IDENTITY_REQ {
 UINT32 asymSize;
 UINT32 symSize;
 UINT32 asymAlg;
 TCPA_ALGORITHM_PARMS algorithm;
 [size_is(asymSize)] BYTE* asymBlob;
 [size_is(symSize)] BYTE* symBlob;
} TCPA_IDENTITY_REQ;

Parameters

Type Name Description

UINT32 asymSize This SHALL be the size of the asymmetric encrypted area created
by TSS_CollateIdentityRequest

UINT32 symSize This SHALL be the size of the symmetric encrypted area created
by TSS_CollateIdentityRequest

TCPA_ALGORI
THM_PARMS

algorithm This SHALL be the parameters for the symmetric algorithm

BYTE* asymBlob This SHALL be the asymmetric encrypted area from
TSS_CollateIdentityRequest

BYTE* symBlob This SHALL be the symmetric encrypted area from
TSS_CollateIdentityRequest

Actions

For reasons of interoperability, the asymmetric algorithm SHOULD be RSA with a key length of 2048 bits
and the symmetric algorithm 3DES in CBC mode.

The algParms area MUST contain the IV value for the CBC encryption. The IV MUST be a random nonce
from the TPM RNG.

The use of AES in CBC mode as the symmetric algorithm is encouraged.

TCPA Main Specification Page 65

Version 1.0 25 January, 2001

4.25.4 TCPA_SYM_IDENTITY_REQ

Start of informative comment:

This structure is used during the process 9.3.2 “Collating a Request for a Trusted Platform Module
Identity”

End of informative comment.

Definition

typedef struct tdTCPA_SYM_IDENTITY_REQ {
 TCPA_VERSION ver;
 TCPA_NONCE random;
 UINT32 labelSize;
 UINT32 identitySize;
 UINT32 endorsementSize;
 UINT32 platformSize;
 UINT32 conformanceSize;
 TCPA_PUBKEY caPubKey;
 [size_is(labelSize)] BYTE* labelArea;
 [size_is(identitySize)] BYTE* identityBinding;
 [size_is(endorsementSize)] BYTE* endorsementCredential;
 [size_is(platformSize)] BYTE* platformCredential;
 [size_is(conformanceSize)] BYTE* conformanceCredential;
} TCPA_SYM_IDENTITY_REQ;

Type Name Description

TCPA_VERSION ver This SHALL be the version specified in section 4.5.

TCPA_NONCE Random This SHALL be a nonce that has been created by a
TCPA-protected capability

UINT32 labelSize This SHALL be the size of the label area

UINT32 IdentitySize This SHALL be the size of the identity area

UINT32 endorsementSize This SHALL be the size of the endorsement
credential

UINT32 PlatformSize This SHALL be the size of the platform credential

UINT32 conformanceSize This SHALL be the size of the conformance
credential

TCPA_PUBKEY CaPubKey This SHALL be public key of the CA which will
provide the credential for the identity

BYTE* LabelArea This SHALL be the text label for the new identity

BYTE* IdentityBinding This SHALL be the signature value of
TCPA_IDENTITY_CONTENTS structure from the
TPM_MakeIdentity command

BYTE* endorsementCredential This SHALL be the TPM endorsement credential

BYTE* platformCredential This SHALL be the TPM platform credential

BYTE* conformanceCredential This SHALL be the TPM conformance credential

TCPA Main Specification Page 66

Version 1.0 25 January, 2001

4.25.5 TCPA_ASYM_IDENTITY_REQ

Start of informative comment:

This structure contains the symmetric key to encrypt the identity request.

End of informative comment.

Definition

typedef struct tdTCPA_ASYM_IDENTITY_REQ {
TCPA_SYMMETRIC_KEY sessionKey;

} TCPA_ASYM_IDENTITY_REQ;

Parameters

Type Name Description

TCPA_NONCE SessionKey This SHALL be the session key

TCPA Main Specification Page 67

Version 1.0 25 January, 2001

4.25.6 TCPA_ASYM_CA_CONTENTS

Start of informative comment:

This structure contains the symmetric key to encrypt the identity credential.

End of informative comment.

Definition

typedef struct tdTCPA_ASYM_CA_CONTENTS{
 TCPA_SYMMETRIC_KEY sessionKey;
 TCPA_DIGEST idDigest;
} TCPA_ASYM_CA_CONTENTS;

Parameters

Type Name Description

TCPA_NONCE SessionKey This SHALL be the session key used by the CA to encrypt
the TCPA_IDENTITY_CREDENTIAL

TCPA_DIGEST idDigest This SHALL be the digest of the TPM identity public key
that is being certified by the CA

TCPA Main Specification Page 68

Version 1.0 25 January, 2001

4.25.7 TCPA_SYM_CA_ATTESTATION

Start of informative comment:

This structure returned by the Privacy CA with the encrypted identity credential.

End of informative comment.

Definition

typedef struct tdTCPA_SYM_CA_ATTESTATION {
 UINT32 credSize;
 TCPA_ALGORITHM_PARMS algorithm;
 [size_is(credSize)] BYTE* credential;
} TCPA_SYM_CA_ATTESTATION;)

Type Name Description

UINT32 credSize This SHALL be the size of the credential parameter

TCPA_ALGORITHM_
PARMS

algorithm This SHALL be the indicator and parameters for the
symmetric algorithm

BYTE* credential This is the result of encrypting
TPM_IDENTITY_CREDENTIAL using the session_key and
the algorithm indicated by sym_alg_id and
sym_alg_parameters

TCPA Main Specification Page 69

Version 1.0 25 January, 2001

4.26 TCPA_CHANGEAUTH_VALIDATE

Start of informative comment:

This structure provides an area that will stores the new authorization data and the challenger’s nonce.

End of informative comment.

Definition

typedef struct tdTCPA_CHANGEAUTH_VALIDATE {
 TCPA_SECRET newAuthSecret;
 TCPA_NONCE n1;
} TCPA_CHANGEAUTH_VALIDATE;

Parameters

Type Name Description

TCPA_SECRET newAuthSecret This SHALL be the new authorization data for the target entity

TCPA_NONCE n1 This SHOULD be a nonce, to enable the caller to verify that the target
TPM is on-line.

TCPA Main Specification Page 70

Version 1.0 25 January, 2001

4.27 TCPA_MIGRATIONKEYAUTH

Start of informative comment:

This structure provides the proof that the associated public key has TPM Owner authorization to be a
migration key.

End of informative comment.

Definition

typedef struct tdTCPA_MIGRATIONKEYAUTH{
 TCPA_PUBKEY migrationKey;
 TCPA_DIGEST digest;
} TCPA_MIGRATIONKEYAUTH;

Parameters

Type Name Description

TCPA_PUBKEY migrationKey This SHALL be the public key of the migration facility

TCPA_DIGEST digest This SHALL be the digest value of the migration key and tpmProof

TCPA Main Specification Page 71

Version 1.0 25 January, 2001

4.28 TCPA_PROTOCOL_ID

Start of informative comment:

This value identifies the protocol in use.

End of informative comment.

Definition

typedef UINT16 TCPA_PROTOCOL_ID;

TCPA_PROTOCOL_ID Values

Value Event Name Comments

0x0001 TCPA_PID_OIAP The OIAP protocol. See 0

0x0002 TCPA_PID_OSAP The OSAP protocol. See 5.2.3

0x0003 TCPA_PID_ADIP The ADIP protocol. See 5.2.6

0X0003 TCPA_PID_ADCP The ADCP protocol. See 5.6

TCPA Main Specification Page 72

Version 1.0 25 January, 2001

4.29 TCPA_ENTITY_TYPE

Start of informative comment:

This specifies the types of entity that are supported by the TPM.

End of informative comment.

Definition

typedef UINT16 TCPA_ENTITY_TYPE;

TCPA_ENTITY_TYPE Values

Value Event Name Comments

0x0001 TCPA_ET_KEYSLOT The entity is a keyslot

0x0002 TCPA_ET_OWNER The entity is the TPM Owner

0x0003 TCPA_ET_DATA The entity is some data

0x0004 TCPA_ET_SRK The entity is the SRK

0x0005 TCPA_ET_KEY The entity is a key

0x0006 TCPA_ET_IDENTITY The entity is a TPM Identity

TCPA Main Specification Page 73

Version 1.0 25 January, 2001

4.30 TCPA_STARTUP_TYPE

Start of informative comment:

To specify what type of startup is occurring.

End of informative comment.

Definition

typedef UINT16 TCPA_STARTUP_TYPE;

TCPA_ENTITY_TYPE Values

Value Event Name Comments

0x0001 TCPA_ST_CLEAR The TPM is starting up from a clean state

0x0002 TCPA_ST_STATE The TPM is starting up from a saved state

TCPA Main Specification Page 74

Version 1.0 25 January, 2001

4.31 Command Ordinals

Start of informative comment:

The command ordinals provide the index value for each command

End of informative comment.

#define TPM_ORD_OIAP 1001
#define TPM_ORD_OSAP 1002
#define TPM_ORD_ChangeAuth 1004
#define TPM_ORD_TakeOwnership 1005
#define TPM_ORD_ChangeAuthAsymStart 1006
#define TPM_ORD_ChangeAuthAsymFinish 1007

#define TPM_ORD_Extend 1010
#define TPM_ORD_PcrRead 1011
#define TPM_ORD_Quote 1012
#define TPM_ORD_Seal 1013
#define TPM_ORD_Unseal 1014
#define TPM_ORD_DirWriteAuth 1015
#define TPM_ORD_DirRead 1016

#define TPM_ORD_UnBind 1021
#define TPM_ORD_CreateWrapKey 1022
#define TPM_ORD_CreateWrapKeyToPcr 1023
#define TPM_ORD_LoadKey 1024
#define TPM_ORD_EvictKey 1025
#define TPM_ORD_BackupKey 1026
#define TPM_ORD_LoadBackupKey 1027
#define TPM_ORD_GetPubKey 1028

#define TPM_ORD_CreateMigrationBlob 1030
#define TPM_ORD_MigrateMigrationBlob 1031
#define TPM_ORD_LoadMigrationBlob 1032
#define TPM_ORD_AuthorizeMigrationKey 1033
#define TPM_ORD_CreateMaintenanceArchive 1034
#define TPM_ORD_LoadMaintenanceArchive 1035
#define TPM_ORD_KillMaintenanceFeature 1036

#define TPM_ORD_HashAll 1040
#define TPM_ORD_HashInit 1041
#define TPM_ORD_HashUpdate 1042
#define TPM_ORD_HashFinal 1043

#define TPM_ORD_HMACAll 1044
#define TPM_ORD_HMACInit 1045
#define TPM_ORD_HMACUpdate 1046
#define TPM_ORD_HMACFinal 1047

#define TPM_ORD_CertifyKey 1048

#define TPM_ORD_Sign 1050
#define TPM_ORD_VerifySignature 1051

#define TPM_ORD_GetRandom 1060
#define TPM_ORD_StirRandom 1061

TCPA Main Specification Page 75

Version 1.0 25 January, 2001

#define TPM_ORD_SelfTestFull 1070
#define TPM_ORD_SelfTestStartup 1071
#define TPM_ORD_CertifySelfTest 1072

#define TPM_ORD_Reset 1100
#define TPM_ORD_OwnerClear 1101
#define TPM_ORD_DisableOwnerClear 1102
#define TPM_ORD_ForceClear 1103
#define TPM_ORD_DisableForceClear 1104

#define TPM_ORD_GetCapabilitySigned 1105
#define TPM_ORD_GetCapability 1106

#define TPM_ORD_OwnerSetDisable 1107
#define TPM_ORD_PhysicalEnable 1108
#define TPM_ORD_PhysicalDisable 1109

#define TPM_ORD_CreateEndorsementKeyPair 1200
#define TPM_ORD_MakeTPMIdentity 1201
#define TPM_ORD_ActivateTPMIdentity 1202

#define TPM_ORD_RecoverTPMIdentity 1210

#define TPM_ORD_GetAuditEvent 1220

#define TPM_ORD_GetOrdinalAuditStatus 1250
#define TPM_ORD_SetOrdinalAuditStatus 1251

//--
// TSS ordinals

#define TSS_ORD_EncryptAll 5001
#define TSS_ORD_EncryptInit 5002
#define TSS_ORD_EncryptUpdate 5003
#define TSS_ORD_EncryptFinal 5004

#define TSS_ORD_DecryptAll 5005
#define TSS_ORD_DecryptInit 5006
#define TSS_ORD_DecryptUpdate 5007
#define TSS_ORD_DecryptFinal 5008

#define TSS_ORD_CollateIdentityRequest 5009

#define TSS_ORD_Bind 5020
#define TSS_ORD_WrapKey 5021
#define TSS_ORD_WrapKeyToPcr 5022

#define TSS_ORD_LogExtendEvent 5100
#define TSS_ORD_GetExtendEvent 5101
#define TSS_ORD_GetExtendEventLog 5102
#define TSS_ORD_DisposeEventLog 5103

#define TSS_ORD_GetAuditLog 5104

TCPA Main Specification Page 76

Version 1.0 25 January, 2001

5. Authorization and Ownership

5.1 Introduction

Start of informative comment:

The purpose of the authorization mechanism is to authenticate an owner and to authorize use of an
entity. The basic premise is to prove knowledge of a shared secret. This shared secret is the
authorization data.

Authorization data is available for the TPM Owner and each entity that the TPM controls. The
authorization data for the TPM and the SRK are held within the TPM itself and the authorization data for
other entities are held with the entity.

The TPM Owner authorization data allows the Owner to prove ownership of the TPM. Proving ownership
of the TPM does not immediately allow all operations – the TPM Owner is not a “super user” and
additional authorization data must be provided for each entity or operation that has protection.

For each operation that uses an entity, the requestor must present the authorization data for the entity.

The TPM treats knowledge of the authorization data as complete proof of ownership of the entity. No
other checks are necessary. The requestor (any entity that wishes to execute a command on the TPM or
use a specific entity) may have additional protections and requirements where he or she (or it) saves the
authorization data; however, the TPM places no additional requirements.

There are two protocols to securely pass a proof of knowledge of authorization data from requestor to
TPM; the “Object-Independent Authorization Protocol” (OI-AP) and the “Object-Specific Authorization
Protocol” (OS-AP). The OI-AP supports multiple authorization sessions for arbitrary entities. The OS-AP
supports an authentication session for a single entity and enables the confidential transmission of new
authorization information. That new authorization information is inserted by the “Authorization Data
Insertion Protocol” (ADIP) during the creation of an entity. The “Authorization Data Change Protocol”
(ADCP) and the “Asymmetric Authorization Change Protocol” (AACP) allow the changing of the
authorization data for an entity. The protocol definitions allow expansion of protocol types to additional
TCPA required protocols and vendor specific protocols.

The protocols use a “rolling nonce” paradigm. This requires that a nonce from one side be in use only for
a message and its reply. For instance, the TPM would create a nonce and send that on a reply. The
requestor would receive that nonce and then include it in the next request. The TPM would validate that
the correct nonce was in the request and then create a new nonce for the reply. This mechanism is in
place to prevent replay attacks and man-in-the-middle attacks.

The basic protocols do not provide long-term protection of authorization data that is the hash of a
password or other low-entropy entities. The TPM designer and application writer must supply additional
protocols if protection of these types of data is necessary.

The design criterion of the protocols is to allow for ownership authentication, command and parameter
authentication and prevent replay and man-in-the-middle attacks.

The passing of the authorization data, nonces and other parameters must follow specific guidelines so
that commands coming from different computer architectures will interoperate properly.

End of informative comment.

All protected commands and entity authorizations requiring authorization MUST use the authorization
data protocols.

The TPM MUST support the OI-AP and the OS-AP which enable proof of knowledge of authorization data
while maintaining the secrecy of that authorization data.

The TPM MUST support the ADIP that inserts the authorization during entity creation.

The TPM MUST support the ADCP and AACP which allow for the changing of authorization data.

TCPA Main Specification Page 77

Version 1.0 25 January, 2001

The TPM MUST support TPM_Terminate_Handle which forces the termination of a session.

The TPM MAY support additional protocols to authenticate, insert and change authorization data.

The TPM MUST support the ability to calculate a HMAC in order to verify authorization data independent
of the source or transmission mechanism. The TPM MUST calculate the HMAC parameters from the IDL
representation of the command. The TPM MUST NOT perform the HMAC calculation for a returning
message when the authorization for the command fails.

If a capability has more than one authorization value, each authorization process MUST use all
authenticated parameters in its HMAC calculation. For example, the capability 9.3.1TPM_MakeIdentity
requires authorization from both the TPM Owner and from the SRK owner. So the authentication
information “TpmOwnerAuth” and “SrkAuth” are each calculated over all parameters tagged as “AUTH” in
the definition of TPM_MakeIdentity.

TCPA Main Specification Page 78

Version 1.0 25 January, 2001

5.2 Authorization protocols

Start of informative comment:

The TPM provides two protocols for authorizing the use of entities without revealing the authorization data
on the network or the connection to the TPM. In both cases, the protocol exchanges nonce-data so that
both sides of the transaction can compute a hash using shared secrets and nonce-data. Each side
generates the hash value and can compare to the value transmitted. Network listeners cannot directly
infer the authorization data from the hashed objects sent over the network.

The first protocol is the “Object-Independent Authorization Protocol” (OI-AP), which allows the exchange
of nonces with a specific TPM. Once an OI-AP session is established, its nonces can be used to
authorize the use any entity managed by the TPM. The session can live indefinitely until either party
request the session termination. The TPM_OIAP function starts the OI-AP.

The second protocol is the “Object Specific Authorization Protocol” (OS-AP)”. The OS-AP allows
establishment of an authentication session for a single entity. The session creates nonces that can
authorize multiple commands without additional session-establishment overhead, but is bound to a
specific entity. The TPM_OSAPStart function starts the OS-AP. The TPM_OSAPStart specifies the entity
to which the authorization is bound.

Most commands allow either form of authorization protocol. In general, however, the OI-AP is preferred –
it is more generally useful because it allows usage of the same session to provide authorization for
different entities. The OS-AP is, however, necessary for operations that set or reset authorization data.

OI-AP sessions were designed for reasons of efficiency; only one setup process is required for potentially
many authorizations.

An OS-AP session is doubly efficient because only one setup process is required for potentially many
authorization calculations and the entity authorization secret is required only once. This minimizes
exposure of the authorization secret and can minimize human interaction in the case where a person
supplies the authorization information. The disadvantage of the OS-AP is that a distinct session needs to
be setup for each entity that requires authorization. The OS-AP creates an ephemeral secret that is used
throughout the session instead of the entity authorization secret. The ephemeral secret can be used to
provide confidentiality for the introduction of new authorization data during the creation of new entities.
Termination of the OS-AP occurs in two ways. Either side can request session termination (as usual) but
the TPM forces the termination of an OS-AP session after use of the ephemeral secret for the introduction
of new authorization data.

For both the OS-AP and the OI-AP, session setup is independent of the commands that are authorized.
In the case of OI-AP, the requestor sends the TPM_OIAP command, and with the response generated by
the TPM, can immediately begin authorizing object actions. The OS-AP is very similar, and starts with the
requestor sending a TPM_OSAPStart operation, naming the entity to which the authorization session
should be bound.

Both session types use a “rolling nonce” paradigm. This means that the TPM creates a new nonce value
each time the TPM uses the session for a HMAC calculation.

Note that some operations involve the use of two authorization elements (for example, UNSEAL requires
the authorization data of the object itself and authorization data of the object’s parent). In this case, two
separate sessions are required. It is not possible to use one session for both purposes.

End of informative comment.

TCPA Main Specification Page 79

Version 1.0 25 January, 2001

5.2.1 OI-AP description

Start of informative comment:

The purpose of this section is to illustrate the OI-AP without regard to a specific command. OI-AP uses
the TPM_OIAP command to create the authorization session. The definition for TPM_OIAP is:

TCPA_RESULT TPM_OIAP(
[out] TCPA_AUTHHANDLE* authHandle,
[out] TCPA_NONCE* n0);

Assume that a TPM user wishes to send command C1. This is an authorized command that operates on
entity E1 and requires the use of the authorization protocol. The user must know the authorization data
for entity E1 (secretE1) as this is the entity that requires authorization. The user needs secretE1 in order
to be able to calculate authC1E1.

Let us assume for this example that the caller of C1 does not need to authorize the use of entity E1 for
more than execution of C1. This use model points to the selection of the OI-AP as the authorization
protocol.

The command has the following layout:

TCPA_RESULT C1(
 [in, out] TCPA_AUTH* authC1E1,
 [AUTH in] X1,
 [AUTH in] Y1,
 [in] Z1,
 [out] O1,
 [AUTH out] O2);

For the C1 command, the AuthC1E1 parameter provides the authorization to execute the command. The
following table shows the commands executed, the parameters created and the wire formats of all of the
information.

Caller On the wire Dir TPM
Send TPM_OIAP TPM_OIAP à • Create session

• Create Handle H0
• Associate session and H0
• Generate Nonce N0
• Save N0 with H0

Save H0 and N0 N0, H0 ß Returns
• Generate N1
• Compute

AuthC1E1.digest =
HMAC (SecretE1,
C1, N0, N1, X1, Y1)

• AuthC1E1.nonce =
N1

Send C1 (Ordinal
TPM_ORD_C1)

TPM_ORD_C1,
AuthC1E1, X1, Y1, Z1

à • TPM retrieves SecretE1 (E1 and
secretE1 must have been previously
loaded)

• The TPM knows that AuthC1E1 refers
to the X1 and Y1 parameters by the
definition of C1.

• Verify AuthC1E1.authHandle points to
a valid session, mismatch returns
TPM_E_INVALIDAUTH

TCPA Main Specification Page 80

Version 1.0 25 January, 2001

• Retrieve N0 from session
• HM = HMAC(SecretE1, C1, N0, N1,

X1, Y1)
• Compare HM to AuthC1E1.digest. If

they do not compare return with
TPM_E_INVALIDAUTH

• Execute C1 and create return code
(RC)

• Generate N2 to replace N0 in session
• Set AuthC1E1.digest = HMAC (

SecretE1, C1, N2, N1,
RETURNCODE, O2)

• Save N2
• HM = HMAC(

SecretE1, C1, N2,
N1, RETURNCODE,
O2)

• Compare HM to
AuthC1E1.digest.
This verifies RC and
output parameters

C1, AuthC1E1, N2,
RETURNCODE, O1, O2

ß • Return result
• If AuthC1E1.continueuse is FALSE

then destroy session

Suppose now that the TPM user wishes to send command C2 using the same session. This is an
authorized command that operates on entity E2. The user must know the authorization data for entity E2
(secretE2) as this is the entity that requires authorization. The user needs secretE1, in order to be able to
calculate authC2E2.

The command has the following layout:

TCPA_RESULT C2(
 [in, out] TCPA_AUTH* authC2E2,
 [AUTH in] X2,
 [AUTH in] Y2,
 [in] Z2,
 [out] O3,
 [AUTH out] O4);

The following table shows the commands executed, the parameters created and the wire formats of all of
the information.

Caller On the wire Dir TPM
Send C2 (Ordinal
TPM_ORD_C2)

TPM_ORD_C2,
AuthC2E2, X2, Y2, Z2

à • TPM retrieves SecretE2 (E2 and
secretE2 must have been previously
loaded)

• The TPM knows that AuthC2E2 refers
to the X2 and Y2 parameters by the
definition of C2.

• Verify AuthC2E2.authHandle points to
a valid session, mismatch returns
TPM_E_INVALIDAUTH

• Retrieve N0 from session
• HM = HMAC(SecretE2, C1, N2, N3,

X2, Y2)
• Compare HM to AuthC2E2.digest. If

they do not compare return with

TCPA Main Specification Page 81

Version 1.0 25 January, 2001

TPM_E_INVALIDAUTH
• Execute C2 and create return code

(RC)
• Generate N4 to replace N2 in session
• Set AuthC1E1.digest = HMAC (

SecretE2, C2, N4, N3,
RETURNCODE, O4)

• Save N4
• HM = HMAC(

SecretE2, C2, N4,
N3, RETURNCODE,
O4)

• Compare HM to
AuthC2E2.digest.
This verifies RC and
output parameters

C2, AuthC2E2, N4,
RETURNCODE, O3, O4

ß • Return result
• If AuthC2E2.continueuse is FALSE

then destroy session

The TPM user could then use the session for further authorization sessions. Suppose, however, that the
TPM user no longer requires the session. The user therefore issues a TPM_Terminate_Handle command
to the TPM. The definition for Terminate_Handle is:

TCPA_RESULT TPM_Terminate_Handle(
 [in] TCPA_PROTOCOL_ID protID,
 [in] UINT32 handle);

so the command is:

TPM_Terminate_Handle (
 PID_OI-AP>,
 H0);

In response, the TPM invalidates the session’s handle and terminates the session’s thread (releases all
resources allocated to the session).

End of informative comment.

5.2.2 TPM_OIAP

IDL Definition

TCPA_RESULT TPM_OIAP(
[in] TCPA_PROTOCOL_ID ProtocolID,
[out] TCPA_AUTHHANDLE* AuthHandle,
[out] TCPA_NONCE* n0);

Type

TCPA protected capability.

Parameters

Type Name Description

TCPA_PROTOCOL_ID ProtocolID The protocol in use MUST be TCPA_PID_OIAP.

TCPA Main Specification Page 82

Version 1.0 25 January, 2001

TCPA_AUTHHANDLE authHandle Handle that TPM creates that points to the authorization
state. The value is TPM specific and has no meaning
except to identity the session.

TCPA_NONCE N0 Nonce generated by TPM and associated with session.

Actions

The TPM_OIAP command allows the creation of an authorization handle and the tracking of the handle
by the TPM. The TPM generates the handle and nonce.

The TPM has an internal limit as to the number of handles that may be open at one time, so the request
for a new handle may fail if there is insufficient space available.

Internally the TPM will do the following:

1. TPM receives command.

2. TPM generates new handle and reserve space to save protocol identification, both nonces and any
other information the TPM needs to manage the session.

3. TPM generates nonce N0.

On each subsequent use of the OIAP session the TPM MUST generate a new nonce value.

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_SIZE There are too many open auth handles

TCPA_FAIL A critical internal error occurred

5.2.3 Authorization using an OI-AP session

Start of informative comment:

This section describes the authorization-related actions of a TPM when it receives a command that has
been authorized with the OI-AP protocol.

Many commands use OI-AP authorization. The following description is therefore necessarily abstract.

End of informative comment.

Actions

On reception of a command with ordinal C1 that uses an authorization session, the TPM SHALL perform
the following actions:

1. The TPM MUST retrieve the secret authorization data (SecretE, say) of the target entity. The
entity and its secret must have been previously loaded into the TPM.

2. The TPM MUST verify that the authorization handle (H, say) referenced in the command points to
a valid session. If it does not, the TPM returns the error code TPM_E_INVALIDAUTH.

3. The TPM SHALL retrieve the latest version of the caller’s nonce (N1, say) from the command.

4. The TPM SHALL retrieve the latest version of the TPM’s nonce (N0, say) from the command.

5. The TPM SHALL retrieve the authenticated parameters (X, say) from the command.

6. The TPM performs a HMAC calculation (HM=HMAC[SecretE, C1, N0, N1, X], say)

TCPA Main Specification Page 83

Version 1.0 25 January, 2001

7. The TPM SHALL compare HM to the authorization value received in the command. If they are
different, the TPM returns the error code TPM_E_INVALIDAUTH. Otherwise, the TPM executes
command C1 which produces an output (O, say) that requires authentication and uses a
particular return code (RC, say).

8. The TPM SHALL generate the latest version of its nonce (N2, say).

9. The TPM creates a digest to authenticate the return values and return codes (ReturnDigest =
HMAC [SecretE1, C1, N2, N1, RC, O])

10. The TPM returns the ReturnDigest to the caller along with C1, N2, RC, O and any other outputs
that do not require authentication.

11. The TPM SHALL retrieve the continue flag from the received command. If the flag is FALSE, the
TPM SHALL terminate the session and destroy the thread associated with handle H.

TCPA Main Specification Page 84

Version 1.0 25 January, 2001

5.2.4 OS-AP Description

Start of informative comment:

The OS-AP command creates an ephemeral secret to authenticate a session.

The purpose of this section is to illustrate the OS-AP without regard to a specific command. OS-AP uses
the TPM_OSAP command to create the authorization session. The definition for TPM_OSAP is:

TCPA_RESULT TPM_OSAP(
[in] TCPA_KEY_SLOT keySlotK,
[in] TCPA_NONCE s1,
[out] TCPA_NONCE* n0,
[out] TCPA_NONCE* s0);

Assume that a TPM user wishes to send command C1. This is an authorized command that operates on
the entity loaded into KeySlot K and requires the use of the authorization protocol. The user must know
the authorization data for the entity E1 (secretE1) that is loaded in KeySlot K. The user needs secretE1 in
order to be able to calculate authC1E1.

Let us assume for this example that the caller needs to authorize the use of KeySlot K for execution of
more than just C1. This use model points to the selection of the OS-AP as the authorization protocol.

The command has the following layout:

TCPA_RESULT C1(
[in, out] TCPA_AUTH AuthC1E1,
[AUTH, in] X1,
[AUTH, in] Y1,
[in] Z1,
[out] O1,
[AUTH, out] O2);

For the C1 command, the AuthC1E1 parameter provides the authorization to execute the command. The
following table shows the commands executed, the parameters created and the wire formats of all of the
information. The TPM_OSAP must have created the session using the entity E1 pointed to by keySlot K.

Caller On the wire Dir TPM
• Generate S1
Send TPM_OSAP TPM_ORD_OSAP, keySlotK,

S1
à • Create Handle H0

• Save S1
• Generate Nonces S0 and N0
• Compute SharedSecret =

HMAC (secretE1, S0, S1)
• Set key slot indicator that

OSAP now running
Save H0, SO and N0 H0, N0, S0 ß Returns
• SharedSecret =

HMAC(secretE1, S0, S1)

• Generate N1
• AuthC1E1.blob = HMAC

(SharedSecret, C1, N0,
N1, X1, Y1)

Send C1 TPM_ORD_C1, X1, Y1, Z1,
AuthC1E1, N1

à Save N1

 • Validate AuthC1E1.blob =
HMAC (SharedSecret, N0,
N1, X1, Y1)

TCPA Main Specification Page 85

Version 1.0 25 January, 2001

• Generate N2
• Execute C1
• AuthC1E1.blob = HMAC

(SharedSecret, C1, N2, N1,
RETURNCODE ,O2)

• Save N2
• Validate AuthC1E1.blob =

HMAC(SharedSecret, C1,
N2, N1, RETURNCODE,
O2)

RETURNCODE, AuthC1E1,
C1, N2, O1, O2

ß Returns

Suppose now that the TPM user wishes to send command C2 using the same session. The command
has the following layout:

TCPA_RESULT C2(
 [in, out] TCPA_AUTH* authC2E1,
 [AUTH in] X2,
 [AUTH in] Y2,
 [in] Z2,
 [out] O3,
 [AUTH out] O4);
The following table shows the commands executed, the parameters created and the wire formats of all of
the information.

Caller On the wire Dir TPM
• Generate N3
• AuthC2E1.blob = HMAC

(SharedSecret, C2, N2,
N3, X2, Y2)

Send C2 TPM_ORD_C2, X2, Y2, Z2,
AuthC2E1, N3

à Save N3

 • Validate AuthC2E1.blob =
HMAC (SharedSecret, N2,
N3, X2, Y2)

• Generate N4
• Execute C2
• AuthC2E1.blob = HMAC

(SharedSecret, C2, N4, N3,
RETURNCODE ,O4)

• Save N4
• Validate AuthC2E2.blob =

HMAC(SharedSecret, C2,
N4, N3, RETURNCODE,
O4)

RETURNCODE, AuthC2E2,
C2, N4, O3, O4

ß Returns

The TPM user could then use the session for further authorization sessions. Suppose, however, that the
TPM user no longer requires the session. The user therefore issues a TPM_Terminate_Handle command
to the TPM. The definition for Terminate_Handle is:

TCPA_RESULT TPM_Terminate_Handle(
 [in] TCPA_PROTOCOL_ID protID,
 [in] UINT32 handle);

so the command is:

TCPA Main Specification Page 86

Version 1.0 25 January, 2001

TPM_Terminate_Handle (
 PID_OS-AP,
 H0);

In response, the TPM invalidates the session’s handle and terminates the session’s thread (releases all
resources allocated to the session).

End of informative comment.

TCPA Main Specification Page 87

Version 1.0 25 January, 2001

5.2.5 TPM_OSAP

Start of informative comment:

The TPM_OSAP command creates the authorization handle, the shared secret and generates N0 and
S0.

End of informative comment.

IDL Definition

TCPA_RESULT TPM_OSAP(
[in] TCPA_PROTOCOL_ID ProtocolID,
[in] TCPA_ENTITY_TYPE entityType,
[in] UINT32 entityValue,
[in] TCPA_NONCE s1,
[out] TCPA_AUTHHANDLE* authhandle,
[out] TCPA_NONCE* n0,
[out] TCPA_NONCE* s0);

Type

TCPA protected capability.

Parameters

Type Name Description

TCPA_PROTOCOL_ID ProtocolID The protocol in use MUST be TCPA_PID_OSAP.

TCPA_ENTITY_TYPE entityType The slot where the private key of the target entity is
loaded. See

UINT32 entityValue The selection value based on entityType

TCPA_NONCE S1 The nonce generated by the caller as part of the shared
secret

TCPA_AUTHHANDLE* authHandle Authorization structure that contains nonces and handle

TCPA_NONCE N0 The even numbered nonce that the caller will use in the
HMAC calculation

TCPA_NONCE S0 The even numbered nonce that the caller will use to
create the shared secret

Actions

The TPM_OSAP command allows the creation of an authorization handle and the tracking of the handle
by the TPM. The TPM generates the handle and the N0 and S0 nonces.

The TPM has an internal limit on the number of handles that may be open at one time, so the request for
a new handle may fail if there is insufficient space available.

The TPM_OSAP allows the binding of an authorization to a specific entity. This allows the caller to
continue to send in authorization data for each command but not have to request the information or cache
the actual authorization data.

Internally the TPM will do the following:

1. TPM receives command.

2. TPM generates new handle and reserves space to save protocol identification, shared secret, both
nonces and any other information the TPM needs to manage the session.

TCPA Main Specification Page 88

Version 1.0 25 January, 2001

3. TPM generates nonces N0 and S0.

4. TPM generates shared secret HMAC (authorization data, S0, S1) and saves secret in session area.

5. TPM fills in the TCPA_AUTH fields and returns.

Descriptions

entityType = TCPA_ET_KEYSLOT

The entity to authorize is a key slot. entityValue contains the key slot where the key is loaded. Key slot 0
identifies the SRK.

entityType = TCPA_ET_OWNER

This value indicates that the entity is the TPM owner. entityValue is ignored.

Usage

On each subsequent use of the OSAP session the TPM MUST generate a new nonce value.

The TPM MUST ensure that OS-AP shared secret is only available while the OS-AP session is valid.

Termination

The session MUST terminate upon any of the following conditions:

• The entity is unloaded. For keys this occurs when another key is loaded into the slot.

• The entity has a change authorization performed on it.

• The session is used in a TPM_ChangeAuth command.

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_SIZE There are too many open auth handles

TCPA_FAIL A critical internal error occurred

5.2.6 Authorization using an OS-AP session

Start of informative comment:

This section describes the authorization-related actions of a TPM when it receives a command that has
been authorized with the OS-AP protocol.

Many commands use OS-AP authorization. The following description is therefore necessarily abstract.

End of informative comment

Actions

On reception of a command with ordinal C1 that uses an authorization session, the TPM SHALL perform
the following actions:

1. The TPM MUST retrieve the shared secret (Shared, say) of the target entity.

2. The TPM MUST verify that the authorization handle (H, say) referenced in the command points to
a valid session. If it does not, the TPM returns the error code TPM_E_INVALIDAUTH.

3. The TPM SHALL retrieve the latest version of the caller’s nonce (N1, say) from the command.

4. The TPM SHALL retrieve the latest version of the TPM’s nonce (N0, say) from the command.

5. The TPM SHALL retrieve the authenticated parameters (X, say) from the command.

6. The TPM performs a HMAC calculation (HM=HMAC[Shared, C1, N0, N1, X], say)

TCPA Main Specification Page 89

Version 1.0 25 January, 2001

7. The TPM SHALL compare HM to the authorization value received in the command. If they are
different, the TPM returns the error code TPM_E_INVALIDAUTH. Otherwise, the TPM executes
command C1 which produces an output (O, say) that requires authentication and uses a
particular return code (RC, say).

8. The TPM SHALL generate the latest version of its nonce (N2, say).

9. The TPM creates a digest to authenticate the return values and return codes (ReturnDigest =
HMAC [Shared, C1, N2, N1, RC, O])

10. The TPM returns the ReturnDigest to the caller along with N2, RC, O and any other outputs that
do not require authentication.

11. The TPM SHALL retrieve the continue flag from the received command. If the flag is FALSE, the
TPM SHALL terminate the session and destroy the thread associated with handle H.

12. If the shared secret was used to provide confidentiality for data in the received command, the
TPM SHALL terminate the session and destroy the thread associated with handle H.

TCPA Main Specification Page 90

Version 1.0 25 January, 2001

TCPA Main Specification Page 91

Version 1.0 25 January, 2001

5.3 TPM_Terminate_Handle

Start of informative comment:

This allows the TPM manager to clear out information in a session handle

End of informative comment.

IDL Definition

TCPA_RESULT TPM_Terminate_Handle(
 [in] TCPA_PROTOCOL_ID protID,
 [in] UINT32 handle);
Type

TCPA protected capability.

Parameters

Type Name Description

TCPA_PROTOCOL_ID protID This SHALL indicate what type of handle to terminate.

UINT32 handle This SHALL be the handle to terminate.

Actions

The TPM SHALL terminate the session and destroy all data associated with the session indicated.

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_FAIL A critical internal error occurred

TCPA Main Specification Page 92

Version 1.0 25 January, 2001

5.4 ADIP – Creating a New Entity

Start of informative comment:

The creation of the authorization data is the responsibility of the entity owner. He or she may use
whatever process he or she wishes. The transmission of the authorization data from the owner to the
TPM requires confidentiality and integrity. The encryption of the authorization data meets these
requirements. The confidentiality and integrity requirements assume the insertion of the authorization
data occurs over a network. While local insertions of the data would not require these measures, the
protocol is established to be consistent with both local and remote insertions.

When the requestor is sending the authorization data to the TPM, the command to load the data requires
the authorization of the entity owner. For example, to create a new TPM ID and set its authorization data
requires the authorization data of the TPM Owner.

The confidentiality of the transmission comes from the encryption of the authorization data, and the
integrity comes from the ability of the owner to verify that the authorization is being sent to a TPM and
that only a specific TPM can decrypt the data.

The mechanism uses the following features of the TPM, OS-AP and HMAC.

• The creation of a new entity requires the authorization of the entity owner. When the requestor starts
the creation process, the creator must use OS-AP.

• The creator encrypts the new authorization data using the shared secret from the OS-AP mechanism
as a one-time pad with XOR and then sends this encrypted data along with the creation request to
the TPM.

• The TPM decrypts the authorization data using the OS-AP shared secret, creates the new entity and
sends the reply back to the creator using the new authorization data as the secret value of the HMAC.

The creator believes that the OS-AP creates a shared secret known only to the creator and the TPM. The
TPM believes that the creator is the entity owner by their knowledge of the parent entity authorization
data. The creator believes that the process completed correctly and that the authorization data is correct
because the HMAC will only verify with the OS-AP secret.

The ADIP allows for the creation of new entities and the secure insertion of the new entity authorization
data. The transmission of the new authorization data uses encryption with the key being a shared secret
of an OS-AP session.

The OS-AP session must be created using the owner of the new entity.

We want to send command C3 to create a new entity, where the command structure is:

TCPA_RESULT C3(
[in, out] TCPA_AUTH AuthY,
[AUTH, in] NEWAUTH,
[AUTH, in] X,
[AUTH, in] Y,
[in] Z,
[out] O1,
[AUTH, out] O2)

We assume that Entity Y is the parent for the new entity (TPM Owner if MakeTPMIdentity, otherwise a
key).

NewAuth is the auth data for the new entity encrypted (XOR) using the shared secret created in
TPM_OSAPStart.

TCPA Main Specification Page 93

Version 1.0 25 January, 2001

Caller On the wire Dir TPM
• Generate S1
Send TPM_OSAP TPM_ORD_OSAP, pubKey,

S1
à • Create Handle H0

• Save S1
• Generate Nonces S0 and N0
• Compute SharedSecret =

HMAC (secretPubKey, S0,
S1)

• Set key slot indicator that
OSAP now running

Save H0, SO and N0 H0, N0, S0 ß Returns
• SharedSecret =

HMAC(secretY, S0, S1)

• Generate N1
• Encrypt NEWAUTH using

SharedSecret as key
• AuthY.blob = HMAC (

SharedSecret, C3, N0, N1,
X , Y, NEWAUTH)

Send C3 TPM_ORD_C3, AuthY,
NEWAUTH, X, Y, Z

à Save N1

 • Validate AuthY.blob = HMAC
(SharedSecret, C3, N0, N1,
X, Y, NEWAUTH)

• Decrypt NEWAUTH using
SharedSecret as key

• Execute C3
• Generate N2
• AuthY.blob = HMAC

(SharedSecret, C3, N2, N1,
RETURNCODE, O2)

• Destroy SharedSecret
Save N2 RETURNCODE,

SessionAuth, N2
ß Returns

• Validate AuthY.blob =
HMAC(SharedSecret, C3,
N2, N1, RETURNCODE,
O2)

• Save new entity

End of informative comment.

The TPM MUST enable ADIP by using the OS-AP. The TPM MUST encrypt the authorization data for the
new entity by performing an XOR using the shared secret created by the OS-AP.

The TPM MUST destroy the OS-AP session whenever a new entity is created.

TCPA Main Specification Page 94

Version 1.0 25 January, 2001

5.5 ADCP - Changing Authorization Data

Start of informative comment:

All entities from the Owner to the SRK to individual keys and data blobs have authorization data. This
data may need to change at some point in time after the entity creation. The ADCP allows the entity
owner to change the authorization data (for a wrapped key, the entity owner is its parent key).

A requirement is that the Owner must remember the old authorization data. The only mechanism to
change the authorization data when the entity Owner forgets the current value is to delete the entity and
then recreate it.

To protect the data from exposure to eavesdroppers or other attackers, the authorization data uses the
same encryption mechanism in use during the ADIP.

Changing authorization data requires opening two authentication handles. The first handle authenticates
the entity Owner (or parent) and the right to load the entity. This first handle is an OS-AP and supplies the
data to encrypt the new authorization data according to the ADIP protocol. The second handle can be
either an OI-AP or an OS-AP, it authorizes access to the entity for which the authorization data is to be
changed.

The authorization data in use to generate the OS-AP shared secret must be the authorization data of the
parent of the entity to which the change will be made.

In the case of TPM identities, the parent (“owner”) of all TPM identities is the SRK. Unfortunately, the SRK
may have a well known value as its authorization data. To avoid the problem of encrypting information
with a well known value, all TPM identity authorization data changes require the first handle OS-AP to be
setup using the TPM Owner authorization data. This is necessary to ensure that the new authdata is not
introduced XORing with an OS-AP shared secret based on the SRK authdata, which may be a well
known value.

Similarly, when changing the authorization data for the SRK, the first handle OS-AP must be setup using
the TPM Owner authorization data. This is because the SRK does not have a parent, per se.

To summarize: only a TPM owner can change TPM identity or SRK authorization data

End of informative comment.

Changing authorization data for the TPM requires authorization of the current TPM Owner.

Changing authorization data for the SRK requires authorization of the TPM Owner.

Changing authorization data for a TPM Identity requires authorization of the TPM Owner.

All other entities require authorization of the parent entity.

TCPA Main Specification Page 95

Version 1.0 25 January, 2001

5.6 TPM_ChangeAuth

Start of informative comment:

The TPM_ChangeAuth command allows the owner of an entity to change the authorization data for the
entity.

End of informative comment.

IDL Definition

TCPA_RESULT TPM_ChangeAuth(
 [in, out] TCPA_AUTH* ParentAuth,
 [in, out] TCPA_AUTH* BlobAuth,
 [AUTH, in] TCPA_ENTITY_TYPE TargetType,
 [AUTH, in] TCPA_PROTOCOL_ID ProtocolID,
 [AUTH, in] UINT32 BlobSize,
 [AUTH, in] UINT32 MaxNewBlobSize,
 [AUTH, in] TCPA_ENCAUTH NewAuth,
 [AUTH, in] TCPA_KEY_SLOT ParentRef,
 [AUTH, in, out] UINT32* NewBlobSize,
 [AUTH, in, size_is(BlobSize)] BYTE* Blob,
 [AUTH, out, size_is(*NewBlobSize)] BYTE* NewBlob);

Type

TCPA protected capability; user must provide authorizations for the entity pointed to by parentRef and
blob.

Parameters

Type Name Description

TCPA_AUTH ParentAuth Authorization structure that contains authorization
data for the parent key.

TCPA_AUTH BlobAuth Authorization structure that contains authorization
data for the Entity in parameter blob.

TCPA_ENTITY_TYPE TargetType What entity to change the authorization data for

TCPA_PROTOCOL_ID ProtocolID The ownership protocol in use.

UINT32 BlobSize Size of the incoming blob.

UINT32 MaxNewBlobSize The maximum size of the data buffer for the out going
blob.

TCPA_ENCAUTH NewAuth This SHALL be the encrypted new authorization data.

TCPA_KEY_SLOT ParentRef Reference to the parent of the blob

UINT32* NewBlobSize The actual size of the out going blob. Must be smaller
than maxNewBlobSize.

BYTE* Blob The entity who’s authorization needs changing.

BYTE* NewBlob The new blob.

TCPA Main Specification Page 96

Version 1.0 25 January, 2001

Actions

This section defines the TPM_PID_ADCP protocol. Additional protocols would have different
requirements.

A TPM MUST support TPM_PID_ADCP.

The TPM Owner and the SRK are Internal entities. All others (wrapped key, sealed data) are External
entities.

If the TargetType is TCPA_ET_OWNER or TCPA_ET_SRK

The session pointed to by parentAuth MUST be TCPA_PID_OSAP using the TPM Owner authorization
data. The newAuth parameters MUST point to the new authorization data, and are protected according to
the ADIP protocol (XORed with the TCPA_PID_OSAP shared secret that is based on the TPM Owner’s
authorization data)

The TPM MUST ignore all other parameters.

The TPM MUST enforce the destruction of the parentAuth session upon completion of this command
(successful or unsuccessful).

If TargetType is TCPA_ET_DATA, TCPA_ET_KEY or TCPA_ET_IDENTITY

The session pointed to by parentAuth MUST be an TCPA_PID_OSAP using the Parent Entity’s
authorization data. The newAuth parameter MUST point to the new authorization data, and is protected
according to the ADIP protocol (XORed with the TCPA_PID_OSAP shared secret that is based on the
parent entity’s authorization data).

When TargetType is TCPA_ET_IDENTITY, the parentAuth session MUST be a TCPA_PID_OSAP using
the TPM Owner authorization data.

The TPM MUST validate the command using the authorization data in the parentAuth parameter. The
parentRef parameter provides the identification of the parent.

After validation the TPM attempts to decrypt the blob using the key pointed to by ParentRef. The TPM
then attempts to validate that the decrypted blob is a valid structure. Then the TPM authorizes the use of
the decrypted entity using the authorization in the blobAuth parameter.

Failure to validate either of these entities results in the TPM returning an error code to the caller.

The TPM then decrypts the newAuth parameter (using the authorization data of the entity pointed to by
ParentRef) and replaces the authorization data in the decrypted blob with the new decrypted value. The
TPM then encrypts the blob using the parent and places the result in the newBlob area. The newAuth
area is encrypted using the ADIP mechanism.

The TPM MUST enforce the destruction of the TCPA_PID_OSAP session upon completion of this
command (successful or unsuccessful).

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_FAIL A critical internal error occurred

TCPA Main Specification Page 97

Version 1.0 25 January, 2001

5.7 Asymmetric Authorization Change Protocol

Start of informative comment:

This asymmetric change protocol allows the entity owner to change entity authorization, under the
parent’s execution authorization, to a value of which the parent has no knowledge.

In contrast, the TPM_ChangeAuth command uses the parent entity authorization data to create the
shared secret that encrypts the new authorization data for an entity. This creates a situation where the
parent entity ALWAYS knows the authorization data for entities in the tree below the parent. There may
be instances where this knowledge is not a good policy.

This asymmetric change process requires two commands and the use of an OI-AP session. The OI-AP
session must hold the state for an ephemeral key created solely for the encryption of the authorization
data.

End of informative comment.

5.7.1 TPM_ChangeAuthAsymStart

Start of informative comment:

The TPM_ChangeAuthAsymStart starts the process of changing authorization for an entity. It sets up an
OI-AP session that must be retained for use by its twin TPM_ChangeAuthAsymFinish command.

TPM_ChangeAuthAsymStart creates a temporary asymmetric public key “tempkey” to provide
confidentiality for new authorization data to be sent to the TPM. TPM_ChangeAuthAsymStart certifies that
tempkey was generated by a genuine TPM, by generating a certifyInfo structure that is signed by a TPM
identity. The owner of that TPM identity must cooperate to produce this command, because
TPM_ChangeAuthAsymStart requires authorization to use that identity.

It is envisaged that tempkey and certifyInfo are given to the owner of the entity whose authorization is to
be changed. That owner uses certifyInfo and a TPM_IDENTITY_CREDENTIAL to verify that tempkey was
generated by a genuine TPM. This is done by verifying the TPM_IDENTITY_CREDENTIAL using the
public key of a CA, verifying the signature on the certifyInfo structure with the public key of the identity in
TPM_IDENTITY_CREDENTIAL, and verifying tempkey by comparing its digest with the value inside
certifyInfo. The owner uses tempkey to encrypt the desired new authorization data and inserts that
encrypted data in a TPM_ChangeAuthAsymFinish command, in the knowledge that only a TPM with a
specific identity can interpret the new authorization data.

End of informative comment.

IDL Definition

TCPA_RESULT TPM_ChangeAuthAsymStart(
 [in, out] TCPA_AUTH* IDAuth,
 [AUTH, in] TCPA_KEY_SLOT idSlot,
 [AUTH, in] TCPA_KEY_SLOT ephSlot,
 [AUTH, in] UINT32 maxSigSize,
 [AUTH, in, out] UINT32* sigSize,
 [AUTH, in, out] TCPA_KEY* tempkey,
 [AUTH, out] TCPA_CERTIFY_INFO* certifyInfo,
 [AUTH, out, size_is(*sigSize)] BYTE* signature);

Type

TCPA protected capability; user must provide authorization for the identity in idSlot.

Parameters

TCPA Main Specification Page 98

Version 1.0 25 January, 2001

Type Name Description

TCPA_AUTH* IDAuth Authorization structure that contains authorization data for the
TPM Identity. For this parameter, the Authorization Type
MUST be OI-AP.

TCPA_KEY_SLOT idSlot This SHALL be the key slot where the identity is loaded. This
MUST be a TPM identity key.

TCPA_KEY_SLOT ephSlot This SHALL indicate the key slot to hold the ephemeral key

UINT32 maxSigSize This SHALL be the maximum size of the signature parameter

UINT32* sigSize This SHALL be the size of the signature parameter

TCPA_KEY* tempKey The input structure contains all parameters except pubkey and
privkey (which are NULL), to specify the size and type of
ephemeral key. The output structure also contains pubkey (the
public part of the new ephemeral key). The privkey field in the
output structure is NULL.

TCPA_CERTIFY_I
NFO

certifyInfo This SHALL be the TCPA_CERTIFY_INFO structure that is
signed.

BYTE* signature This SHALL be the signature on the certifyInfo parameter
using the key in idSlot.

Actions

• The TPM SHALL verify the authorization to use the TPM identity key held in idSlot. The TPM MUST
verify that the key is a TPM identity key.

• The TPM SHALL validate the algorithm parameters for the key to create from the tempKey
parameter. The minimum RSA key size MUST be 512 bits.

• The TPM SHALL create a new key from the tempKey parameters and associate the internal storage
of this newly created key with the OI-AP session handle provided by IDAuth parameter.

• The TPM SHALL fill in the TCPA_PUBKEY section of the tempKey parameter. The TPM MUST set
the TCPA_PRIVKEY section to null.

• The TPM SHALL fill in the TCPA_CERTIFY_INFO structure for the newly created key. This structure
SHALL be returned in parameter certifyInfo. See below for field values.

• The TPM then performs a TPM_Internal_Signature (See 8.16.2) on the certifyInfo parameter using
the key pointed to by idSlot. The resulting signed blob is returned in signature parameter.

Field Descriptions for certifyInfo parameter

Name Description

Version TCPA version structure; section 4.5.

Keyflags.IsWrappedToPCR This SHALL be set to FALSE.

Keyflags.Redirection This SHALL be set to FALSE.

Keyflags.Migratable This SHALL be set to FALSE.

Keyflags.Volatile This SHALL be set to TRUE.

Keyflags.Migration This SHALL be set to FALSE.

TCPA Main Specification Page 99

Version 1.0 25 January, 2001

pcrList This SHALL be an empty list.

typeOfKey This SHALL be set to algorithm in use

typeTag This SHALL reflect the newly created key algorithm information.

authDataUsage This SHALL be set to TPM_AUTH_ALWAYS.

KeyUsage This SHALL be set to TPM_KEY_AUTHCHANGE

DigestValue This SHALL be set to NULL

pubDigest This SHALL be the hash of the public key being certified.

Data This SHALL be set to NULL

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_FAIL A critical internal error occurred

TCPA Main Specification Page 100

Version 1.0 25 January, 2001

5.7.2 TPM_ChangeAuthAsymFinish

Start of informative comment:

The TPM_ChangeAuth command allows the owner of an entity to change the authorization data for the
entity. It must use the same OI-AP session as its twin TPM_ChangeAuthAsymStart command.

The command requires the cooperation of the owner of the parent of the entity, since authorization must
be provided to use that parent entity. The command requires knowledge of the existing authorization
information and passes the new authorization information. The “BlobAuth” parameter proves
knowledge of existing authorization information and new authorization information. The new authorization
information “encNewAuth” is encrypted using the “tempKey” variable obtained via
TPM_ChangeAuthAsymStart.

A parent therefore retains control over a change in the authorization of a child, but is prevented from
knowing the new authorization data for that child.

 End of informative comment.

IDL Definition

TCPA_RESULT TPM_ChangeAuthAsymFinish(
 [in, out] TCPA_AUTH* ParentAuth,
 [AUTH, in] TCPA_ENTITY_TYPE TargetType,
 [AUTH, in] UINT32 BlobSize,
 [AUTH, in] UINT32 MaxNewBlobSize,
 [AUTH, in] UINT32 NewAuthSize,
 [AUTH, in] TCPA_KEY_SLOT ParentRef,
 [AUTH, in] TCPA_DIGEST BlobAuth,
 [AUTH, in, size_is(NewAuthSize)] BYTE* encNewAuth,
 [AUTH, in, size_is(BlobSize)] BYTE* Blob,
 [AUTH, in, out] UINT32* NewBlobSize,
 [AUTH, out] TCPA_DIGEST* ChangeProof,
 [AUTH, out, size_is(*newBlobSize)] BYTE* NewBlob);

Type

TCPA protected capability; caller must provide authorizations for the entity pointed to by parentRef and
blob.

Parameters

Type Name Description

TCPA_AUTH ParentAuth Authorization structure that contains authorization data for
the parent key.

The OI-AP session MUST be the same session as the one
used in TPM_ChangeAuthAsymStart command that created
the public key used to encrypt the contents of the NewAuth
parameter.

TCPA_ENTITY_T
YPE

TargetType The type of the entity in “Blob” whose authorization is to be
changed.

UINT32 BlobSize Size of the incoming blob.

UINT32 MaxNewBlobSize The maximum size of the data buffer for the outgoing blob.

UINT32 NewAuthSize The size of the new authorization data.

TCPA Main Specification Page 101

Version 1.0 25 January, 2001

TCPA_KEY_SLOT ParentRef Reference to the parent of the blob

TCPA_DIGEST BlobAuth A HMAC that links the old authorization data with the new
authorization data. See below.

BYTE* encNewAuth The new authorization data structure encrypted under the
public key associated with the OI-AP session.

BYTE* Blob The entity whose authorization needs changing.

UINT32* NewBlobSize The actual size of the out going blob.

TCPA_DIGEST* ChangeProof This SHALL contain a cryptographic proof that the
authorization data changed.

BYTE* NewBlob The new blob.

Actions

• The TPM SHALL validate that the ParentAuth parameter authorizes use of the key in parentRef.

• The TPM SHALL validate that the session in use by ParentAuth is managing an active and valid
TPM_KEY_AUTHCHANGE key.

• The TPM SHALL decrypt the entity held in the Blob parameter and validate the structure of the
decrypted entity.

• The TPM SHALL decrypt the encNewAuth blob using the private key of the
TPM_KEY_AUTHCHANGE key pair. The decrypted area contains a structure newAuth of type
TCPA_CHANGEAUTH_VALIDATE.

• The TPM SHALL create blobverify by performing the following HMAC calculation: blobverify = HMAC(
newAuth.newAuthSecret) using blob.currentAuth as the secret. Where the currentAuth is the current
shared authorization secret and the newAuth.newAuthSecret area is the new shared authorization
secret.

• The TPM SHALL compare the blobverify value with the BlobAuth parameter. The TPM SHALL
indicate a failure if the values do not match.

• The TPM SHALL replace decryptedblob.authdata with newAuth.newAuthSecret.

• The TPM SHALL encrypt the decryptedblob structure using the appropriate wrap command with the
key in ParentRef.

• The TPM SHALL create ChangeProof parameter by creating an HMAC. ChangeProof =
HMAC(newAuth.newAuthSecret, newAuth.nonce1). Where the newAuth parameter is the new shared
authorization secret and nonce1 is the nonce.

• The TPM MUST destroy the TPM_KEY_AUTHCHANGE key associated with the OI-AP session.

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_FAIL A critical internal error occurred

TCPA Main Specification Page 102

Version 1.0 25 January, 2001

5.8 Authorization Data

Start of informative comment:

The authorization data is a 160-bit field that the TPM stores in a “shielded location,” which is an area
where data is protected against interference and prying, independent of its form. The Owner has a copy
of the data and protects the data using whatever mechanism the Owner wishes to use. The authorization
data is a shared secret between the TPM and the Owner of the entity. There are no requirements as to
what the 160 bit of data are. The assumption is that the data is a SHA-1 hash of a password or other
data, but the data can be anything.

There will be a separate piece of authorization data for each entity. There is no requirement that each
authorization data blob must be unique.

The TPM treats the authorization data as shielded data, an approach that requires that only TPM-
protected capabilities access the authorization data. A further requirement is that the only use of the
authorization data within the TPM is in the authorization process. No other use is permissible.

The protection of the backup mechanism is a type of authorization.

End of informative comment.

The TPM MUST reserve 160 bits for the authorization data. The TPM treats the authorization data as a
blob. The TPM MUST keep the authorization data in a shielded location.

The TPM MUST enforce that the only usage in the TPM of the authorization data is to perform
authorizations.

5.9 Nonces

Start of informative comment:

All of the authorization protocols require nonces to prevent replay and man-in-the-middle attacks. To
further strengthen the use of the nonces a rolling-nonce paradigm requires the use of new nonces for
each message and response.

The nonce values from the TPM must use the internal RNG. The nonce values from the requestor can
use any source that provides information to the requestor. The highest value is obtained when the
requestor also uses an RNG for the nonce values; however, there is no loss of security to the TPM if set
values are in use. The requestor loses some protection when he or she (or it) uses set values.

In all descriptions of nonce usage in this section all odd nonce values come from the challenger, all even
nonce values come from the TPM (0 is an even number for this definition).

The requestor is responsible for generating and sending the odd nonce value. The TPM will enforce that
the odd nonce value changes for each request.

The TPM is responsible for the even nonce values. The TPM changes the value of the even nonce on
each reply.

End of informative comment.

The requestor MUST provide a unique value in the nonce field of the authorization structure for each
request.

The TPM MUST supply a new nonce value for each reply. The nonce value MUST come from the internal
RNG. The TPM MUST enforce the validity of the returning nonce another command uses the
authorization session.

TCPA Main Specification Page 103

Version 1.0 25 January, 2001

5.10 Authorization Handle

Start of informative comment:

The TPM generates authorization handles to allow for the tracking of information regarding a specific
authorization invocation.

The TPM saves information specific to the authorization, such as the nonce values, ephemeral secrets
and type of authentication in use.

The TPM may create any internal representation of the handle that is appropriate for the TPM’s design.
The requestor always uses the handle in the authorization structure to indicate authorization structure in
use.

The TPM must support a minimum of two concurrent authorization handles. The use of these handles is
to allow the Owner to have an authorization active in addition to an active authorization for an entity.

To ensure garbage collection and the proper removal of security information, the requestor should
terminate all handles. Termination of the handle uses the continue-use flag to indicate to the TPM that the
handle should be terminated.

Termination of a handle instructs the TPM to perform garbage collection on all authorization data.
Garbage collection includes the deletion of the ephemeral secret.

End of informative comment.

The TPM MUST support authorization handles. The TPM MUST support a minimum of two concurrent
authorization handles.

The TPM MUST support authorization-handle termination. The termination includes garbage collection of
authorization data.

TCPA Main Specification Page 104

Version 1.0 25 January, 2001

5.11 HMAC Calculation

Start of informative comment:

The HMAC provides two pieces of information to the TPM: proof of knowledge of the authorization data
and proof that the request arriving is authorized and has no modifications made to the command in
transit.

The HMAC definition is for the HMAC calculation only. It does not specify the order or mechanism that
transports the data from caller to actual TPM.

The creation of the HMAC is order dependent. Each command has specific items that are portions of the
HMAC calculation. The actual calculation starts with the definition from RFC 2104.

RFC 2104 requires the selection of two parameters to properly define the HMAC in use. These values are
the key length and the block size. This specification will use a key length of 20 bytes and a block size of
64 bytes. These values are known in the RFC as K for the key length and B as the block size.

The basic construct is

 H(K XOR opad, H(K XOR ipad, text))

where

• H = the SHA1 hash operation

• K = the key or the authorization data

• XOR = the XOR operation

• opad = the byte 0x5C repeated B times

• B = the block length

• ipad = the byte 0x36 repeated B times

• text = the message information and any parameters from the command

End of informative comment.

The TPM MUST support the calculation of an HMAC according to RFC 2104.

The key size (K in RFC 2104) MUST be 20 bytes. The block size (B in RFC 2104) MUST be 64 bytes.

When a command has two HMAC calculations (i.e. it has two TCPA_AUTH parameters) then BOTH
calculations MUST use the same parameters and nonces. The only difference between the two
calculations is the secret.

The order of the parameters is critical to the TPM’s ability to recreate the HMAC. Not all of the fields are
sent on the wire for each command for instance only one of the nonce values travels on the wire. The text
field follows the following construction format:

• The authorization data for the entity to release. The authorization data is the shared secret that both
sides of the conversation are trying to prove knowledge of.

• Command ordinal

• TCPA_AUTH fields excluding the nonce value

• Even Nonce (from TPM)

• Odd Nonce (from requestor)

• On return the return code is included the calculation.

• Parameters from the command selected from the left of the definition. Those commands that are
security sensitive have the AUTH decoration in the IDL fields.

TCPA Main Specification Page 105

Version 1.0 25 January, 2001

5.11.1 HMAC Long Parameters

Start of informative comment:

A TPM implementation for reasons of speed or efficiency may wish to delay the transmission of a
parameter to the TPM. To facilitate this ability the HMAC calculation does not occur on parameters that
are longer than 20 bytes. Rather the caller performs a SHA-1 hash of the parameter and then
incorporates the hash result in the HMAC calculation. The caller must transmit the parameter and the 20
byte hash result.

The requirement to perform the hash operation before use of the parameter allows a driver to delay
transmission of a large parameter, validate HMAC and when required transmits the parameter.

End of informative comment.

The HMAC calculation MUST use a 20-byte hash value instead of the actual parameter value for all
parameters with a length greater than 128 bytes.

The TPM MUST perform the hash operation and validate the HMAC calculation before using an individual
parameter.

TCPA Main Specification Page 106

Version 1.0 25 January, 2001

5.12 TPM Ownership

Start of informative comment:

The Owner of the TPM has the right to perform special operations. The process of taking ownership is the
procedure whereby the Owner inserts a shared secret into the TPM. For all future operations, knowledge
of the shared secret is proof of ownership. When the Owner wishes to perform one of the special
operations then the Owner must use the authorization protocol to prove knowledge of the shared secret.

The TPM default state is to have no Owner.

The difficulty with ownership is inserting the shared secret in a secure manner. A design consideration is
that the taking of ownership must be an operation that works securely over the network. The function
must provide confidentiality and integrity to the messages sent to the TPM.

The function to insert the Owner must provide the following:

• Confidentiality. The shared secret (or authorization data) must remain confidential to all
eavesdroppers that intercept any of the messages. The confidentiality comes from encrypting the
shared secret using the TPM PUBEK. The Owner trusts that only the TPM has the PRIVEK that can
decrypt the shared secret.

• Integrity. The TPM and the Owner must be able to determine the integrity of messages and
responses to the function. The integrity checking does not have to occur at the instant of receiving a
message. The Owner validates the integrity of the messages using the HMAC construct.

• Remoteness – the function must allow the Owner to take control across a network.

• Verifiability. The function allows the Owner to verify that he or she has truly taken control. The Owner
verifies that the secret was successfully installed by verifying the HMAC response. Additional
verification can occur by attempting to establish a Owner session.

The TPM_TakeOwnership function inserts the Owner-authorization data and creates a new Storage Root
Key (SRK). The TPM_TakeOwnership function fails if there is already an Owner set for the TPM.

After inserting the authorization data, the TPM_TakeOwnership function creates the SRK. By default SRK
entities have no authorization data associated with them. The owner should set the SRK secret to null (by
passing in a zero length) to set the SRK authorization data to null.

To validate that the operation completes successfully, the TPM HMACs the response to the
TPM_TakeOwnership function.

End of informative comment.

The TPM MUST ship with no Owner installed. The TPM MUST use the ownership-control protocol.

TCPA Main Specification Page 107

Version 1.0 25 January, 2001

5.12.1 TPM_TakeOwnership

IDL Definition

TCPA_RESULT TPM_TakeOwnership (
 [in, out] TCPA_AUTH* auth,
 [AUTH, in] UINT32 ProtocolID,
 [AUTH, in] TCPA_ENCAUTH EncOwnerAuth,
 [AUTH, in] TCPA_ENCAUTH EncSrkAuth,
 [AUTH, in, out] TCPA_KEY* SrkPub);

Type

TCPA protected capability; user must encrypt the values using the PUBEK.

Parameters

Type Name Description

TCPA_AUTH* auth The authorization from the TPM Owner. There is no
validation of in parameters, just validation on the return
that the proper authorization data was used.

UINT32 ProtocolID The ownership protocol in use. The default protocol for
version 1.0 is TPM_PRT_OWNER.

TCPA_ENCAUTH EncOwnerAuth The encrypted Owner authorization data

TCPA_ENCAUTH EncSrkAuth The encrypted Storage Root Key (SRK) authorization data

TCPA_KEY SrkPub The input structure contains all parameters except pubkey
and privkey (which are NULL), to specify the size and type
of SRK. The output structure also contains pubkey (the
public part of the SRK). The privkey field in the output
structure is NULL.

Actions

The new owner MUST encrypt the Owner authorization data and the SRK authorization data using the
PUBEK. The endorsement key pair MUST be an RSA key so the encryption algorithm in use to encrypt
these secrets is RSA.

If the TPM has a current owner then the TPM upon receipt of this command SHALL return the error code
TCPA_OWNER_SET.

If the TPM has no current owner then the TPM upon receipt of this command SHALL:

1. Decrypt EncOwnerAuth using the PRIVEK to generate ProspectiveOwnerAuth.

2. Use the TCPA authorization protocol to verify that all input parameters tagged with AUTH have
been sent by an entity that knows ProspectiveOwnerAuth. If any verification fails, abandon this
process and do not return a value to the caller. Otherwise, continue with this process.

3. Store ProspectiveOwnerAuth as the Owner’s authorization data.

4. Generate a new SRK. The SRK MUST be a 2048 bit RSA key.

5. Decrypt EncSrkAuth using the PRIVEK and store the result as the SRK’s authorization data.

6. Return the public part of the SRK to the caller.

7. Calculate an authenticated response using the new authorization data

TCPA Main Specification Page 108

Version 1.0 25 January, 2001

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_OWNER_SET There is already an Owner and we do not want a new one

TCPA_FAIL A critical internal error occurred

TCPA Main Specification Page 109

Version 1.0 25 January, 2001

6. Integrity Collection and Reporting

6.1 Introduction

Start of informative comment:

The TCPA Trusted Platform Support Services(TSS) provides mechanisms for cryptographically reporting
the current hardware and software configuration of a computing device to local and remote Challengers.
The TSS also provides a limited protected storage capability, which allows the Subsystem Owner to store
an acceptable platform configuration, biometric data or other data that is available early in boot. System
firmware or other software may use this storage capability to name Users qualified to log on, or
acceptable boot configurations. TCPA specification does not define how this storage facility should be
used.

The TSS also provides a facility whereby platform software or firmware may store secrets that are
accessible only when the platform is in a defined configuration. This mechanism is known as sealing. The
following sections describe and define the Trusted Platform Module (TPM)–protected operations that
support integrity collection and reporting. The usage required in a TCPA-compliant PC platform is
described in a separate document.

End of informative comment.

TCPA Main Specification Page 110

Version 1.0 25 January, 2001

6.2 Platform Configuration Registers

6.2.1 Format and Properties

A Platform Configuration Register (PCR) consists of a 160-bit field that holds a cumulatively updated
hash value and a 4-byte status field. The PCR data structure MUST be a TCPA-shielded location. PCRs
SHOULD be in volatile storage. The PCRs MUST be set to 0 before first use. This specification does not
mandate the internal storage format.

A TPM implementation MUST provide eight or more independent PCRs. These PCRs are identified by
index and MUST be numbered from 0 (that is, PCR0 through PCR7 are required for TCPA compliance).
Vendors MAY implement more registers for general-purpose use. Extra registers MUST be numbered
contiguously from 8 up to max – 1, where max is the maximum offered by the TPM.

The TCPA-protected capabilities that expose and modify the PCRs use a 32-bit index, indicating the
maximum usable PCR index. However, TCPA reserves register indices 230 and higher for later versions of
the specification. A TPM implementation MUST NOT provide registers with indices greater than or equal
to 230. The register index 232-1 is used as a wildcard identifier for TPM_Seal and TPM_Unseal; it does not
identify an actual PCR. In this specification, the following terminology is used (although this internal
format is not mandated).

6.2.2 Initialization

PCRs and the protected capabilities that operate upon them MAY NOT be used until power-on self-test
(TPM POST) has completed. If TPM POST fails, the TPM_Extend operation will fail; and, of greater
importance, the TPM_Quote operation and TPM_Seal operations that respectively report and examine
the PCR contents MUST fail. At the successful completion of TPM POST, all PCRs MUST be set to 0.
Additionally, the UINT32 flags MUST be set to zero.

6.2.3 Authorized PCRs

A TPM MUST provide one Data Integrity Register (DIR). Implementations MAY provide more. These
registers MUST hold 160-bit values and MUST be held in TCPA-shielded locations. Further, these
registers MUST be non-volatile (values are maintained during the power-off state). A TPM implementation
need not provide the same number of DIRs as PCRs.

TCPA Main Specification Page 111

Version 1.0 25 January, 2001

6.3 Operations Supporting Integrity Collection and Reporting

6.3.1 TPM_Extend

The TPM_Extend operation MUST be the only operation that can modify PCR contents (beyond internal
POST code and register initialization, which also happens only during POST).

IDL Definition

TCPA_RESULT TPM_Extend(
 [in] TCPA_PCRINDEX Pcrnum,
 [in] TCPA_DIGEST InDigest,
 [out] TCPA_PCRVALUE* OutDigest);
Type

TCPA protected capability.

Parameters

Type Name Description

TCPA_PCRINDEX Pcrnum Index of the PCR to be modified

TCPA_DIGEST InDigest Any 160-bit value representing the event to be recorded

TCPA_PCRVALUE* OutDigest Pointer to a DIGEST-sized memory location that is updated by the
TPM_Extend operation to be the contents of the named PCR
when internal processing is complete. If this parameter is NULL,
no value is returned. If the TPM is disabled, NULL is returned.

Actions

The TPM_Extend operation performs a TCPA-defined one-way operation on the contents of the named
PCR. The operation is computationally unfeasible to reverse. TPM_Extend MUST form an internal data
structure consisting of the current value of PCRindex concatenated with the event parameter in a TCPA-
shielded location (to form a 320-bit data structure, with the current PCR contents first and the event
second). The TPM MUST then calculate the SHA-1 hash of the composite structure and MUST store the
resulting value back in PCRindex.

Here is this operation represented in pseudocode:

TCPA_PCRVALUE = SHA-1 (cat(TCPA_PCRVALUE , Event))

The SHA-1 operation is defined in section 10, “Conformance Criteria.”

The TPM_Extend operation will succeed and its internal actions will be performed even if the
TCPA_PERSISTENT_FLAG disable or the TCPA_VOLATILE_FLAG deactivated is TRUE. However, if
the TPM is disabled or deactivated, NULL is returned for PcrFinal, and all operations that attempt to read
this value will fail with TCPA_DISABLED.

The TPM_Extend operation operates normally if the TPM is not yet initialized.

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_BADINDEX PCR index does not exist

TCPA_FAIL A critical internal error occurred

TCPA Main Specification Page 112

Version 1.0 25 January, 2001

6.3.2 TPM_PcrRead

The TPM_PcrRead operation provides non-cryptographic reporting of the contents of a named PCR.

IDL Definition

TCPA_RESULT TPM_PcrRead(
 [in] TCPA_PCRINDEX Pcrnum,
 [out] TCPA_PCRVALUE* OutDigest);

Type

TCPA protected capability

Parameters

Type Name Description

TCPA_PCRINDEX Pcrnum Index of the PCR to be read

TCPA_PCRVALUE * OutDigest The current contents of the named PCR

Actions

The TPM_PcrRead operation returns the current contents of the named register and its flags to the caller.

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_BADINDEX PCR index does not exist

TCPA_BAD_PARAMETER One or more parameters is bad

TCPA_FAIL POST failed, or another critical error occurred

TCPA_DISABLED The TPM is disabled

TCPA Main Specification Page 113

Version 1.0 25 January, 2001

6.3.3 TPM_Quote

The TPM_Quote operation provides cryptographic reporting of PCR values. A loaded identity key is
required for operation. TPM_Quote uses an identity key to sign a statement that names the current value
of a chosen PCR and externally supplied data (which may be a nonce supplied by a Challenger).

TPM_CERTIFYKEY and TPM_Quote are the only operations that use TPM identity keys apart from those
operations used to acquire identities.

IDL Definition

TCPA_RESULT TPM_Quote(
[in, out] TCPA_AUTH* Auth,

 [AUTH, in] UINT32 SigBlobMaxSize,
 [AUTH, in] TCPA_PCR_SELECTION targetPCR,
 [AUTH, in] TCPA_KEY_SLOT Key1,
 [AUTH, in] TCPA_DIGEST ExternalData,
 [AUTH, in, out] UINT32* SigBlobSize,

[AUTH, out] TCPA_PCR_COMPOSITE* PcrData
 [AUTH, out, size_is(*SigBlobSize), out] BYTE* SigBlob);

Type

TCPA protected capability; user must provide authorization to use the key indicated by the key1
parameter.

Parameters

Type Name Description

TCPA_AUTH Auth Authorization data for the identity key used for
the signing operation.

UINT32 SigBlobMaxSize Maximum permissible size of the signature blob

TCPA_PCR_SELECTION targetPCR This SHALL be the indication of which PCR
registers are active in this quote operation

TCPA_KEY_SLOT Key1 This SHALL be the slot identifier of the key to
provide the quote

TCPA_DIGEST ExternalData 160 bits of externally supplied data (typically a
nonce provided by a server to prevent replay-
attacks)

UINT32* SigBlobSize Set to the size of the returned signature blob

TCPA_PCR_COMPOSITE pcrData This SHALL be the digest values of all the
active PCR registers selected for the quote
operation

BYTE* SignatureBlob Pointer to memory that is to receive the signed
data blob

Actions

The TPM MUST validate the authorization to use the key pointed to by key1.

The TPM MUST check that the targetPCR parameter is a consistent TCPA_PCR_SELECTION structure.
If not, the TPM MUST return the error code TCPA_BADINDEX.

TCPA Main Specification Page 114

Version 1.0 25 January, 2001

If the targetPCRSize parameter value is 0x00, the TPM MUST return the error code
TCPA_BADINDEX.

If the targetPCRSize parameter value is not 0x00, the TPM_Quote operation SHALL:

1. Assemble a TCPA_PCR_COMPOSITE data structure in a TPM-shielded location. The PCR
indices in the TCPA_PCR_COMPOSITE structure SHALL be the same as those in the targetPCR
parameter. This TCPA_PCR_COMPOSITE data structure SHALL be returned by the call.

2. Create a TCPA_COMPOSITE_HASH structure as described in section 10.4.5, using the
TCPA_PCR_COMPOSITE structure as an input.

3. Incorporate the TCPA_COMPOSITE_HASH, information about the type of operation
(TPM_QUOTE), version information, and the ExternalData parameter into a
TCPA_QUOTE_INFO structure.

4. Sign the TCPA_QUOTE_INFO structure, using SHA-1 for hashing and the Key1 parameter as
the encryption key.

5. Return the resulting signature value in SignatureBlob.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_BADINDEX PCR index does not exist.

TCPA_INVALID_HANDLE The key handle does not refer to an active identity key handle.

TCPA_BAD_PARAMETER One or more parameters are invalid.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

TCPA_DISABLED The TPM is disabled.

TCPA Main Specification Page 115

Version 1.0 25 January, 2001

6.3.4 TSS_LogExtendEvent

Start of informative comment:

TSS_LogExtendEvent can be used to provide a uniform way of logging the supporting data that is
sometimes needed to interpret PCR values and composite PCR values. The events logged can have
supporting validation certificates, or they may be other data structures. TCPA defines certain event-type
information (for instance, validation certificates). Other application-specific types may be added using the
naming convention described.

All pre-OS components that call TPM_Extend should also call TSS_LogExtendEvent for each
TPM_Extend operation. One of the parameters to TSS_LogExtendEvent is the actual digest-sized event
logged to TPM_Extend. The other parameters to LogExtendEvent describe the PCR to which the event
relates and the certificates (or other data) that aid in interpreting the composite PCR values.

Conceptually, the TSS will maintain an array of events, with the array format defined later. The
TSS_LogExtendEvent operation adds a new event to the end of the array associated with the named
PCR. The TSS is free to reallocate event-log storage as it sees fit. The TSS also is free to maintain
additional data structures that permit fast random access to events.

Logged information is retrieved using the TSS_GetExtendEvent call, where events are accessed by
index, and TSS_GetExtendEventLog, which returns a pointer to a data structure that describes the entire
log. The logs maintained by TSS_LogExtendEvent need not be held in TCPA-shielded locations, and the
logging and retrieval operations need not be TCPA-protected capabilities. This is because servers or
other software can detect tampering with the log.

Upper-level software that uses the TPM need not use the TSS-provided TPM_Extend log. Any OS-
specific logging mechanism may be used. However, it is essential to transfer information in a uniform way
between the pre-OS environment and the OS itself. Its use is required in the PC boot case for this
purpose.

End of informative comment.

IDL Definition

TCPA_RESULT TSS_LogExtendEvent(
 [in] TCPA_PCRINDEX Pcr,
 [in] TCPA_PCRVALUE PcrValue,
 [in] UINT32 EventType,
 [in] UINT32 EventSize,
 [in, size_is(EventSize)] BYTE* Event,
 [out] UINT32* EventNumber);

Type

TSS function

Parameters

Type Name Description

TCPA_PCRINDEX Pcr PCR with which the event should be associated

TCPA_PCRVALUE PcrValue Parameter passed to the corresponding TPM_Extend
operation

UINT32 EventType Type of event. TCPA defines certain events and reserves
others. The EventType parameter specifies the form of the
supporting event information to make interpretation easier.

TCPA Main Specification Page 116

Version 1.0 25 January, 2001

UINT32 EventSize Size of the data structure containing the supporting
information in bytes

BYTE* Event Pointer to an opaque data structure that provides the
supporting information for an event

UINT32* EventNumber The number of the event just logged. The TSS numbers
events for each PCR monotonically from 0 (i.e., events
associated with each PCR are separately numbered from
0).

Actions

The TSS_LogExtendEvent operation MUST add supporting information for the named TPM_Extend event
to the end of TSS event log. The TSS MUST maintain an array of event-supporting data with events
identified by the register to which they belong and the order in which the events occurred. The log need
not be in a TCPA-shielded location, and the TSS_LogExtendEvent action need not be a TCPA-protected
capability. The TSS MUST NOT impose arbitrary size limitations on the size of the event log. The event
log size should be limited by physical memory, memory accessible in the given operating mode, or
memory allocated to the log by system firmware or other software.

It is anticipated that upper-level software will make a copy of needed event data and will dispose of the
logs once copies are made. In all cases, ExtendValue should be the actual digest-sized event passed to
TPM_Extend.

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_BADINDEX PCR index does not exist

TCPA_BAD_PARAMETER *Action is not readable

TCPA_RESOURCES The event log is full

TCPA Main Specification Page 117

Version 1.0 25 January, 2001

6.3.5 TSS_GetExtendEvent

Start of informative comment:

TSS_GetExtendEvent is used to retrieve events logged with TSS_LogExtendEvent.
TSS_GetExtendEvent need not be a TCPA-protected capability, and the log events retrieved need not be
in TCPA-shielded locations. TSS_GetExtendEvent returns the event type reported to
TSS_LogExtendEvent, the DIGEST-sized event passed to TPM_Extend, the opaque data blob provided
as supporting information for the event, and its length.

TSS_GetExtendEvent is not a TCPA-protected capability and does not access shielded data; hence, it
cannot be protected against unauthorized access by the procedures available in this specification.
However, TSS implementors may choose to provide their own restrictions against unauthorized access.

End of informative comment.

IDL Definition

TCPA_RESULT TSS_GetExtendEvent(
 [in] TCPA_PCRINDEX Pcr,
 [in] UINT32 EventNumber,
 [in] UINT32 EventMaxSize,
 [in, out] UINT32* EventSize,
 [out] UINT32* EventType,
 [out] TCPA_PCRVALUE* PcrValue,
 [out, size_is(*EventSize)] BYTE* Event);

Type

TSS function

Parameters

Type Name Description

TCPA_PCRINDEX Pcr PCR for which the event is being queried

UINT32 EventNumber Index of event required. Events are numbered from 0 to 1 –
the number of events logged on the named PCR

UINT32 EventMaxSize Maximum acceptable size of the event data to be returned
in bytes. If this parameter is zero, no actual data will be
written into *Data, but the *Size parameter will be set to the
size of the buffer required.

UINT32* EventSize Actual size of the event data returned in bytes, or size of the
data buffer required

UINT32 EventType The type of the event

TCPA_PCRVALUE* PcrValue Event parameter passed to TPM_Extend

BYTE* Event Pointer to a memory location that will be filled with the
opaque binary data describing the event

Actions

The TSS_GetExtendEvent operation retrieves events previously logged using TSS_LogExtendEvent. The
format of the data returned is identical to that previously logged. This operation interface retrieves log

TCPA Main Specification Page 118

Version 1.0 25 January, 2001

entries by index. On TSS initialization (or following a TSS_DisposeEventLog call), the event log for each
PCR is empty. The first event logged to a register is numbered 0, the next is numbered 1, and so on.
Attempts to receive log items beyond the end of the log return an error.

Note that that the event log is required to be accessible in the form of an array (whose properties are
defined in section 6.3.6). TSS implementation MAY choose to provide supplemental data structures to
make random array access through TSS_GetExtendEvent more efficient.

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_BADINDEX PCR index does not exist

TCPA_BADEVENT The numbered event does not exist

TCPA_BAD_PARAMETER One or more parameters are invalid

TCPA_BUFSIZE The size specified in MaxSize is not large enough to hold the
event data structure. If this error is returned, *Size is still set to the
buffer size required.

TCPA Main Specification Page 119

Version 1.0 25 January, 2001

6.3.6 TSS_GetExtendEventLog

Start of informative comment:

TSS_GetExtendEventLog returns a selected event from the log of all events since the TPM was initialized
or since TSS_DisposeEventLog (defined next) was called. The data structure returned is an array of
TCPA_PCR_EVENT data structures. The array elements are of variable size, and the
TCPA_PCR_EVENT structure defines the size of the current event and the register with which it is
associated. This data structure is not required to be thread-safe, so upper-level software should ensure
that it is not modified during parsing. The array terminator is a defined sentinel. If the event log is kept in a
TCPA-shielded location, then a copy must be made in an unprotected area that can be traversed by non-
TPM protected calling code.

TSS_GetExtendEventLog is not a TCPA-protected capability and does not access shielded data; hence,
it cannot be protected against unauthorized access by the procedures available in this specification.
However, TSS implementors may choose to provide their own restrictions against unauthorized access.

End of informative comment.

IDL Definition

TCPA_RESULT TSS_GetExtendEventLog(
 [out] UINT32* Log);

Type

TSS function.

Parameters

Type Name Description

UINT32* Log The operation sets this pointer to point to the head of the
event log list data structures.

Events are variably sized. The size of each event, including that of the Length and PCRIndex parameters,
is specified in the TCPA_PCR_EVENT.Length parameter. The Event variable-sized array is the event
data itself, and the PCRIndex is the register to which the event relates.

The whole event log is returned as a pointer to an array of these variably sized TCPA_PCR_EVENT
structures. Individual TCPA_PCR_EVENT items are BYTE-aligned. The event log is terminated by a
TCPA_PCR_EVENT element in which the TCPA_PCR_EVENT.Index is zero. The head of the array is
returned using the TSS_GetExtendEvent call.

Actions

This command returns to the caller the complete event log.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_BAD_PARAMETER EventLogHead is NULL or memory is not writable.

TCPA_FAIL A critical system error occurred.

TCPA Main Specification Page 120

Version 1.0 25 January, 2001

6.3.7 TSS_DisposeEventLog

Start of informative comment:

The TSS_DisposeEventLog operation instructs the TSS to dispose of the event logs for all registers and
optionally free memory in use. Calls to query the event log after TSS_DisposeEventLog will indicate an
empty log. Upper-level software may still log new events to the TSS, although this is unlikely to be useful,
since partial logs are difficult to interpret. It is instead anticipated that upper-level software will maintain a
copy of this pre-OS event log and dispose of the original.

End of informative comment.

IDL Definition

TCPA_RESULT TSS_DisposeEventLog();

Type

TSS function

Parameters

Type Name Description

None

Actions

DISPOSE_EVENT_LOG empties all logs entries for all registers, and optionally frees memory associated
with the data structures. It has no effect on the PCRs themselves.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_FAIL A critical system error occurred.

TCPA Main Specification Page 121

Version 1.0 25 January, 2001

6.3.8 TPM_DirWriteAuth

Start of informative comment:

The TPM_DirWriteAuth operation provides write access to the Data Integrity Registers. DIRs are non-
volatile memory registers held in a TCPA-shielded location. Owner authentication is required to authorize
this action. TCPA_version 1.0 requires only one DIR. If the DIR named does not exist, the TPM_DirRead
operation returns TCPA_BADINDEX.

End of informative comment.

IDL Definition

TCPA_RESULT TPM_DirWriteAuth(
 [in, out] TCPA_AUTH* OwnerAuth,
 [AUTH, in] TCPA_DIRINDEX DIRindex,
 [AUTH, in] TCPA_DIRVALUE NewContents);

Type

TCPA protected capability; the user must provide authorization from the TPM Owner to execute function.

Parameters

Type Name Description

TCPA_AUTH* OwnerAuth Owner-authentication data for an active session.

TCPA_DIRINDEX DIRindex Index of the DIR.

TCPA_DIRVALUE NewContents Value to be stored in the named DIR.

Actions

This is an Owner-authenticated action. In order to perform this action, software must have a valid Owner
session. TPM_DirWriteAuth allows the Owner, after authentication, to write a new value into the named
DIR.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_BADINDEX The DIR index does not exist.

TCPA_AUTHFAIL Authentication failed.

TCPA_FAIL An internal error occurred, or an earlier self-test failed.

TCPA_DISABLED The TPM is disabled.

TCPA Main Specification Page 122

Version 1.0 25 January, 2001

6.3.9 TPM_DirRead

Start of informative comment:

The TPM_DirRead operation provides read access to the DIRs. No authentication is required to perform
this action because typically no cryptographically useful authorization data is available early in boot. TSS
implementors may choose to provide other means of authorizing this action. TCPA_version 1.0 requires
only one DIR. If the DIR named does not exist, the TPM_DirRead operation returns TCPA_BADINDEX.

End of informative comment.

IDL Definition

TCPA_RESULT TPM_DirRead(
 [in] TCPA_DIRINDEX DIRindex,
 [in, out] TCPA_DIRVALUE* Contents);

Type

TCPA protected capability.

Parameters

Type Name Description

TCPA_DIRINDEX DIRIndex Index of the DIR.

TCPA_DIRVALUE* Contents Pointer to a memory location that will receive the
contents.

Actions

TPM_DirRead is a non-authenticated operation that returns the current contents of the named DIR.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_BADINDEX The DIR does not exist.

TCPA_FAIL An internal error occurred, or an earlier self-test failed.

TCPA Main Specification Page 123

Version 1.0 25 January, 2001

7. Protected Storage
Start of informative comment:

This section introduces the processes by which a TPM may act as the portal to confidential data stored
on arbitrary storage media.

A TPM is required to protect the keys that represent TPM identities, and keys that are released only when
the computing environment of the associated platform has a particular state. Given this capability, it is a
natural extension to enable a TPM to protect arbitrary data and arbitrary keys. Unfortunately, this
approach requires a potentially unbounded amount of storage within a TPM. The TCPA specification
therefore includes capabilities that enable a TPM to act as a portal to potentially unbounded amounts of
confidential data outside the TPM.

Storing data outside the TPM has the additional advantages of enabling easier migration of confidential
data from one platform to another and enabling recovery of confidential data in the event of platform
failure. These protected-storage capabilities are designed to enable the TPM to operate as a slave device
so as to avoid the cost complexity associated with a master device in a computing platform. These
capabilities also are designed to avoid the need for the TPM to manage the confidential data that is
stored outside the TPM. These design goals impose constraints on the nature of the protected-storage
capabilities.

The TCPA solution uses the TPM to generate “blobs” of secret data. Unspecified capabilities outside the
Subsystem manage protected storage and issue certificates or other indications about the purpose and
usefulness of data/keys held in blobs. Those unspecified capabilities issue commands to the TPM that
cause it to create blobs of data and to use and return the contents of such blobs. This unspecified
functionality is the manager of protected storage and uses the TPM as a specialized co-processor. The
protected-storage commands are chosen to prevent subversion of the data in protected storage. Hence a
rogue management function can disrupt protected storage but cannot subvert it.

A stored secret could be any of the following:

• Arbitrary data or a key. If a secret is arbitrary data, it can be exported from the TPM, and the TPM will
not perform operations using that data. If the secret is a key, it is available for use within the TPM,
and will never be exported from the TPM.

• An encryption (storage) key or a signing key. If a key is for encryption, it must not be used for signing,
and visa versa. Encryption keys are used only to provide confidentiality for blobs. Signature keys are
used for signing arbitrary data submitted by the entity authorized to use that key.

• The signature key of a TPM identity. Such a signature key will be used only for special signing
operations.

A stored secret has the following attributes:

• It may be capable of migration to another platform or it may be non-migratable. Keys that are
migratable cannot be considered unique to a particular platform. Non-migratable keys can be
considered to be unique to a particular platform.

• It may be generated inside the TPM or externally loaded. Externally loaded keys cannot be stored as
non-migratable keys, for obvious reasons.

• It may be bound to the TPM or bound to a sequence of integrity metrics. At times, data or a key is
required to be bound to a particular platform. At other times, it is required to be bound to a particular
computing environment within a platform.

• It may have access control. A secret may be open to all processes on a platform or it may not, with
varying degrees of control in between.

Some of these attributes are partitioned as separate commands, while others are partitioned as flags
within commands. All the commands cause the TPM to create a secret blob and return it to the caller. The
inverse commands cause the TPM to import a blob. Sometimes the TPM will then return the contents of

TCPA Main Specification Page 124

Version 1.0 25 January, 2001

the blob (data) to the caller, and sometimes the TPM loads the contents of the blob (a key) for use within
the TPM.

In all cases, the TPM must already contain the key that will be used to either encrypt or decrypt the blob.
This naturally leads to a tree of blobs, where intermediate nodes contain encryption (storage) keys that
are used to encrypt/decrypt child nodes. The root of the tree is the “Storage Root Key” (SRK) which is
generated inside the TPM and is non-migratable. Only leaf nodes can contain signing keys, because a
TPM will refuse to use a signing key to encrypt/decrypt child nodes. A TPM also will refuse to use a
migratable node as the parent of a non-migratable node. (This enables migration of the supposedly non-
migratable node.) On the other hand, a non-migratable node could be the parent of a migratable node,
with no ill effects.

The commands executed by the TPM are as follows:

• TSS_Bind: External data is encrypted under a parent key. (TPM_UnBind decrypts the blob using the
parent key and exports the data from the TPM.)

• TPM_Seal: External data is concatenated with a value of integrity metric sequence and encrypted
under a parent key. (TPM_Unseal decrypts the blob using the parent key and exports the plaintext
data if the current integrity metric sequence inside the TPM matches the value of integrity metric
sequence inside the blob.)

• TSS_WrapKey: An externally generated key is encrypted under a parent key. (TPM_LoadKey
decrypts the target blob using the parent key and loads the target key inside the TPM, for use by the
TPM.)

• TSS_WrapKeyToPcr: An externally generated key is concatenated with a value of integrity metric
sequence and encrypted under a parent key. (TPM_LoadKey decrypts the target blob using the
parent key and loads the target key inside the TPM, for use by the TPM, if the current integrity metric
sequence inside the TPM matches the value of integrity metric sequence inside the blob.)

• TPM_CreateWrapKey: A key is generated inside the TPM and then encrypted under a parent key.
(TPM_LoadKey decrypts the target blob using the parent key and loads the target key inside the
TPM, for use by the TPM.)

• TPM_CreateWrapKeyToPcr: A key is generated inside the TPM, concatenated with a value of
integrity metric sequence, and encrypted under a parent key. (TPM_LoadKey decrypts the target blob
using the parent key and loads the target key inside the TPM, for use by the TPM, if the current
integrity metric sequence inside the TPM matches the value of integrity metric sequence inside the
blob.)

When a blob is loaded into a TPM, the TPM distinguishes between a data-bearing blob and a key-bearing
blob by inspecting the data structure inside the blob. Data-bearing blobs are constructed according to
PKCS #1. Key-bearing blobs are constructed using a TCPA-defined format. Each blob containing a key
includes the field KeyUsage, which indicates whether the key is to be used for encryption (storage) or
signing.

Command Usage with keys Comment
TSS_Bind N/A No key
TPM_Seal N/A No key
TSS_WrapKey Migratable, encrypt or sign Externally loaded
TSS_WrapKeyToPcr Migratable, encrypt or sign Externally loaded
TPM_CreateWrapKey Any
TPM_CreateWrapKeyToPcr Any

TCPA-protected storage uses asymmetric cryptography exclusively. One reason is that asymmetric
crypto is already required to support TPM identities, but asymmetric crypto is not specifically necessary
for any function. Another reason is that (in many, but not all, cases) operations to construct blobs can be
performed outside the TPM; only the recovery of information from blobs (using the private key) must be

TCPA Main Specification Page 125

Version 1.0 25 January, 2001

done inside a TPM. This is possible because it is frequently true that all the necessary data to construct a
blob (including the public key) is available outside the TPM. One notable exception is the TPM_Seal
command, which must be performed inside a TPM because it requires reliable access to the Platform
Configuration Registers. Using asymmetric crypto for protected storage therefore reduces the complexity
of a TPM.

Some other important characteristics of “protected storage” are

• Whenever a blob is created, the TPM includes random data to guard against plaintext attacks.

• Whenever a CreateXX command creates a new key within the TPM, the blob that is produced
contains the private (signature) key and the TPM also exports the corresponding public (identity) key
as plaintext.

• Whenever a WrapXX command loads a new key into the TPM, only the private key (and its RSA
modulus) must be presented.

• Whenever the TPM_LoadKey command is asserted, the TPM imports a secret blob containing the
private (signature) key and the TPM also imports the corresponding public (identity) key as plaintext.
Active RSA keys inside the TPM are referenced by slot number where loaded into the TPM. To
minimize key management burden inside the TPM, it is assumed “key slot” management is performed
outside the TPM.

• The integrity of the data from the TPM_UnBind command is not checked by the TPM. Hence
applications should use an “out of band” mechanism for verifying data integrity, if such verification is
necessary.

Each secret blob contains a field of 20 bytes that may be used for authorization data. For convenience,
the authorization field is the same size as the output of the SHA-1 hash algorithm. The authorization field
is merely stored inside a blob, and the protected-storage capabilities do not themselves interpret the field.

The AuthorizationDataUsage field determines when authorization is required.

The integrity of data or keys recovered from blobs is ensured by an implicit, rather than explicit,
mechanism. Ordinarily, an integrity check is provided by appending a checksum to original plaintext data.
After decryption, the checksum is recomputed and compared with the checksum in the recovered data.
Such a checksum needs to be at least 16 bytes long so as to have the necessary statistical properties. In
the case of recovered blobs, the first 20 bytes of authorization data are sufficient to determine with high
probability that data has been successfully decrypted without error. If the decryption fails, or the
encrypted data contains errors, it is unlikely that the authorization data in the recovered blob will match
the submitted authorization data.

The TPM also can be commanded to provide evidence that a particular public key is associated with a
non-migratable private key (which was generated by the TPM and has never been released outside the
TPM). This is the TPM_CERTIFYKEY operation. It enables a third party to use a public key to encrypt
data that can be recovered only using a protected-storage command. It also enables a third party to have
confidence that a signature key has been generated by the TPM and has never been released outside
the TPM.

Migratory data may be copied to an arbitrary number of platforms, using the “migration” commands
provided. Non-migratory data may be moved to another platform only with the cooperation of a third party
(the manufacturer of the platform, or his representative), using the “maintenance” commands provided.

End of informative comment.

7.1 Introduction

7.1.1 Characteristics

Start of informative comment:

TCPA Main Specification Page 126

Version 1.0 25 January, 2001

This section specifies how to use the TPM to provide secure storage for an unlimited number of private
keys or other data. Basically, this is done through the RSA key technology built into the TPM to encrypt
data and keys with a public key to which the TPM has access to its corresponding private key. The
resulting encrypted file, which contains header information in addition to the data or key, is called a blob,
and cannot be any bigger than key size used to encrypt it. The specification also shows how this is done,
so that private keys generated on the TPM can be stored outside the TPM (encrypted) in a way that
allows the TPM to use them later without ever exposing such keys in the clear outside the TPM.

Padding and speed requirements make the TPM a very inefficient and inappropriate vehicle to do any
bulk encryption, but it can be used to securely store keys that would then be used by software to do bulk
encryption. There are a number of usage modules that imply requirements on the function of the TPM, as
follows:

• Signing with a private key by the TPM can be accomplished only by presentation of authorization data
to the TPM that is associated with that private key. A private key generated by a third party can be
linked to a specific TPM without exposing the private key to the Owner/User of the TPM, but only with
the consent of the User of the TPM.

• It MUST be possible to prove a specific public key is associated with a private key known only to a
TPM. It must be possible for the Owner of a key, with the cooperation of the Owner of the TPM to
migrate a migratable key from one platform to another without giving up control of the key to the TPM
Owner.

• It must not be possible for the Owner of a key, even with the cooperation of the Owner of the TPM to
migrate a non-migratable key from one platform to another. Since a key may be wrapped outside the
TPM, it is necessary that non-migratable keys always be generated inside the TPM. It must not be
possible for the Owner of a non-migratable asymmetric key, even with cooperation of the Owner of
the TPM, to decrypt the contents of an encrypted bundle encrypted with that non-migratable
asymmetric key.

• If a TPM is compromised, it must not compromise all TPMs.

• To facilitate application level exchange of symmetric keys, the symmetric keys are stored using
PKCS#1.

All this is generally accomplished as follows:

• Any data in protected storage is explicitly identified as migratable or non-migratable.

• Each TPM contains a SRK, generated by the TPM at the request of the Owner. Under that SRK are
two trees: one dealing with migratable data and the other dealing with non-migratable data.

• The non-migratable tree is directly below the SRK. The migration tree is directly below a “migration
root” key that is directly below the SRK. Each node in a tree provides confidentiality for the nodes
immediately below it. Obviously, all intermediate nodes in the trees must be encryption keys. Nodes
in the non-migratable tree must be generated by the TPM; otherwise, non-migratable nodes could be
exposed.

Finally, some observations:

• In the migration tree, only leaf nodes should be available for signing. This is because a signature
node (used outside the TPM for signing) should never be used for encryption and hence cannot be
used to encrypt other nodes. Hence, it must be a leaf.

• Similarly, in a non-migration tree, only leaf-nodes should be available for signing. Since non-
migratable nodes must not be migrated, they must never appear outside the TPM after being installed
in the TPM.

• Any non-leaf node in the non-migratable tree must be generated within the TPM and never exposed
outside the TPM. Any key (and hence every non-migratable key) generated in a TPM must be a
genuine key.

TCPA Main Specification Page 127

Version 1.0 25 January, 2001

• Any migratable key can be migrated by anyone that owns any of its migratable ancestors. As a
result, in order to be sure that a migratable key cannot be migrated by anyone but the owner of that
key, the owner can always create the migratable key and store it with a non-migratable storage key,
thus guaranteeing the user has unique authority to authorize migration of that key.

End of informative comment.

7.1.2 Key Storage

The number of asymmetric keys that are storable via a TPM SHOULD be limited only by the volume of
storage available to the platform.

The TPM SHALL ensure that the keys in all slots, other than slot 0, are volatile.

7.2 Mandatory Functions

Start of informative comment:

Every TSS MUST support these functions; some must be TPM, and all may be TPM. They are derived
from three parameters:

1. Is the secret stored data or as a key?

2. Is the secret generated internally or externally?

3. Is the secret bound to just the platform or also to PCRs?

These parameters would ordinarily lead to eight functions, but because data is always assumed to be
generated externally, they yield to just six functions, as follows:

1. Data, generated externally, bound to PCRs: TPM_Seal command (TPM-protected capability). Inverse
command is TPM_Unseal.

2. Data, generated externally, bound to platform: TSS_Bind command (TSS). Inverse command is
TPM_UnBind.

3. Key, generated internally, bound to PCRs: TPM_CreateWrapKeyToPcr command (TPM-protected
capability). Inverse command is TPM_LoadKey.

4. Key, generated externally, bound to PCRs: TSS_WrapKeyToPcr (TSS). Inverse command is
TPM_LoadKey.

5. Key, generated internally, bound to platform: TPM_CreateWrapKey command (TPM-protected
capability). Inverse command is TPM_LoadKey.

6. Key, generated externally, bound to platform: TSS_WrapKey command (TSS). Inverse command is
TPM_LoadKey.

End of informative comment.

TCPA Main Specification Page 128

Version 1.0 25 January, 2001

7.2.1 TPM_Seal

Start of informative comment:

The SEAL operation allows software to explicitly state the future “trusted” configuration that the platform
must be in for the secret to be revealed. The SEAL operation also implicitly includes the relevant platform
configuration (PCR-values) when the SEAL operation was performed.

If the UNSEAL operation succeeds, proof of the platform configuration that was in effect when the SEAL
operation was performed is returned to the caller, as well as the secret data. This proof may, or may not,
be of interest. If the SEALed secret is used to authenticate the platform to a third party, a caller is
normally unconcerned about the state of the platform when the secret was SEALed, and the proof may be
of no interest. On the other hand, if the SEALed secret is used to authenticate a third party to the
platform, a caller is normally concerned about the state of the platform when the secret was SEALed.
Then the proof is of interest.

For example, if SEAL is used to store a secret key for a future configuration (probably to prove that the
platform is a particular platform that is in a particular configuration), the only requirement is that that key
can be used only when the platform is in that future configuration. Then there is no interest in the platform
configuration when the secret key was SEALed. An example of this case is when SEAL is used to store a
network authentication key.

On the other hand, suppose an OS contains an encrypted database of users allowed to log on to the
platform. The OS uses a SEALED blob to store the encryption key for the user-database. However, the
nature of SEAL is that any SW stack can SEAL a blob for any other software stack. Hence the OS can
be attacked by a second OS replacing both the SEALED-blob encryption key, and the user database
itself, allowing untrusted parties access to the services of the OS. To thwart such attacks, SEALED blobs
include the past SW configuration. Hence, if the OS is concerned about such attacks, it may check to see
whether the past configuration is one that is known to be trusted.

End of informative comment.

IDL Definition

TCPA_RESULT TPM_Seal(
 [in, out] TCPA_AUTH* pubAuth,
 [AUTH, in] UINT32 futurePCRSize,
 [AUTH, in] UINT32 blobSize,
 [AUTH, in] UINT32 SealedMaxSize,
 [AUTH, in] BOOL CurrentStateOut,
 [AUTH, in] TCPA_ENCAUTH Secret,
 [AUTH, in] TCPA_KEY_SLOT parentSlot,
 [AUTH, in] TCPA_COMPOSITE_HASH targetPCRHash,
 [AUTH, in, size_is(futurePCRSize)] BYTE* targetPCR,
 [AUTH, in, size_is(blobSize)] BYTE* blob,
 [AUTH, in, out] UINT32* SealedSize,
 [AUTH, in, out] UINT32* currentPCRSize,
 [AUTH, out, size_is(*SealedSize), out] BYTE* SealedBlob,
 [AUTH, out, size_is(*currentPCRSize), out] BYTE* currentPCR);

Type

TPM function; user must provide authorization to use the key pointed to by keySlot.

Parameters

Type Name Description

TCPA_AUTH* PubAuth This SHALL be the authorization session that
authorizes the use of key pointed to by keySlot.

TCPA Main Specification Page 129

Version 1.0 25 January, 2001

authorizes the use of key pointed to by keySlot.
The session type MUST be OS-AP.

UINT32 futurePCRSize This SHALL be the size of the futurePCR
parameter

UINT32 blobSize This SHALL be the size of the object parameter

UINT32 SealedMaxSize The maximum size of the output area

BOOL CurrentStateOut If set to FALSE, the TPM SHALL not return the
current PCR values.

TCPA_ENCAUTH Secret The encrypted authorization data for the sealed
data. The encryption key is the shared secret
from the OS-AP protocol being an XOR of the
data.

TCPA_KEY_SLOT parentSlot This SHALL be the public key that is the parent
of the sealed data

TCPA_COMPOSITE_HASH TargetPCRHash This SHALL be the composite digest of the PCR
indexes and values to which parameter blob is
to be sealed. This must have been constructed
according to the algorithm described in 10.4.5
using the target PCR values.

BYTE* targetPCR This SHALL be a TCPA_PCR_SELECTION
structure containing the list of the indexes of the
PCRs to which the blob parameter is to be
sealed.

BYTE* Blob This SHALL be the data to be sealed to the
platform and any specified PCRs

UINT32* SealedSize The used size of the output area for SealedBlob

UINT32* currentPCRSize The used size of the output area for currentPCR

BYTE* SealedBlob Encrypted, integrity-protected data object that is
the result of the TPM_Seal operation.

BYTE* CurrentPCR This SHALL be the concatenated
TCPA_PCR_COMPOSITE structure as
computed by the TPM with the current PCR
values

Actions

TPM_Seal is used to encrypt private objects that can only be decrypted using TPM_Unseal.

The TPM_Seal command MUST use the RSAES_OAEP protocol from PKCS#1 version 2.0 to perform
the encryption.

The TPM_Seal command MUST fill in a TPM_SEALED_DATA structure and then encrypt the structure.
The encryption key for the operation is the key pointed to by parentSlot parameter.

The TPM MUST check that the targetPCR parameter is a consistent TCPA_PCR_SELECTION structure.
If not, the TPM MUST return the error code TCPA_BADINDEX.

If the targetPCRSize parameter value is not equal to 0x00, the TPM will compute a
TCPA_COMPOSITE_HASH value, using the targetPCR TCPA_PCR_SELECTION structure, to fill the

TCPA Main Specification Page 130

Version 1.0 25 January, 2001

TPM_SEALED_DATA.digestAtCreation member variable. The TPM MUST compute this
TCPA_COMPOSITE_HASH value using the targetPCR parameter as the input to the algorithm described
in 10.4.5. The TPM MUST set the TPM_SEALED_DATA.IsSealedToPCR value to TRUE.

If the targetPCRSize parameter value is 0x00, then the blob parameter is not bound to any particular
PCR values. The TPM MUST set the TPM_SEALED_DATA.IsSealedToPCR value to FALSE.

If the CurrentStateOut parameter is set to TRUE, then the currentPCR parameter MUST be the
TCPA_PCR_COMPOSITE structure that was generated by the TPM when creating the
TPM_SEALED_DATA.digestAtCreation.

If the CurrentStateOut parameter is set to FALSE, then the TPM MUST not return the current values of
the PCRs in targetPCR.pcrIndex. The TPM MUST set CurrentPCRSize to 0. Note that in this case, the
TPM still computes the TPM_SEALED_DATA.digestAtCreation parameter.

The TPM SHALL return TCPA_FAIL CurrentStateOut is TRUE and targetPCRSize equals 0.

While the caller MUST provide authorization data, there is no requirement on the authorization data itself.
If the caller wishes to use authorization data like nulls or other well-known values the TPM MUST NOT
check for these conditions.

Manufacturers MUST ensure that TPM_Sealed blobs are distinguishable by the TPM from other
encrypted data blobs by using the TPM_SEALED_DATA structure.

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_BADINDEX PCR index does not exist.

TCPA_FAIL An internal error occurred, or a previous self-test failed.

TCPA_AUTHFAIL Authorization data is incorrect.

TCPA_DISABLED The TPM is disabled.

TCPA Main Specification Page 131

Version 1.0 25 January, 2001

7.2.2 TPM_Unseal

Start of informative comment:

The TPM_Unseal operation will reveal TPM_Sealed data only if it was encrypted on this platform and the
current configuration (as defined by the named PCR contents) is the one named as qualified to decrypt it.
Internally, TPM_Unseal accepts a data blob generated by a TPM_Seal operation. TPM_Unseal decrypts
the structure internally, checks the integrity of the resulting data, and checks that the PCR named has the
value named during TPM_Seal. Additionally, the caller must supply appropriate authorization data for
blob and for the key that was used to seal that data.

If the integrity, platform configuration and authorization checks succeed, the sealed data and a proof of
the configuration of the platform at the time when the data was stored are returned to the caller;
otherwise, an error is generated.

End of informative comment.

IDL Definition

TCPA_RESULT TPM_Unseal(
 [in, out] TCPA_AUTH* ParentAuth,
 [in, out] TCPA_AUTH* BlobAuth,
 [AUTH, in] UINT32 BlobSize,
 [AUTH, in] UINT32 MaxSecretSize,
 [AUTH, in] UINT32 pcrListSize,
 [AUTH, in] TCPA_KEY_SLOT parentKeySlot,
 [AUTH, in, size_is(BlobSize)] BYTE* Blob,
 [AUTH, in, size_is(pcrListSize)] BYTE* pcrList,
 [AUTH, in, out] UINT32* SecretSize,
 [AUTH, out] TCPA_COMPOSITE_HASH* OldPcrHash,
 [AUTH, out, size_is(*SecretSize)] BYTE* Secret);

Type

TPM protected capability; the user must provide authorizations to use the parent key pointed to by
parentKeySlot.

Parameters

Type Name Description

TCPA_AUTH* ParentAuth Authorization data to use the key pointed to by the
parentKeySlot parameter.

TCPA_AUTH* BlobAuth Authorization data to reveal the data encrypted in
the blob parameter.

UINT32 BlobSize Size of blob

UINT32 MaxSecretSize Maximum size of the output secret

UINT32 pcrListSize This SHALL be the size of the pcrList parameter

TCPA_KEY_SLOT ParentKeySlot This SHALL be the index of the TPM Slot where the
key to be used for decryption of the blob is to be
found.

BYTE* Blob Encrypted data blob generated by a TPM_Seal
operation.

TCPA Main Specification Page 132

Version 1.0 25 January, 2001

BYTE* pcrList This SHALL be a TCPA_PCR_SELECTION
structure containing the list of the indexes of the
PCRs to which the blob parameter is to be sealed.

UINT32* SecretSize The size of the outputted secret

TCPA_PCRVALUE* OldPcrHash This SHALL be the composite hash that was stored
in the decrypted blob’s digestAtCreation parameter.

BYTE* Secret Filled with the decrypted sealed data (if the
operation succeeds).

Actions

The TPM_Unseal MUST decrypt the data blob into a TCPA-shielded location using the private part of the
key pointed to by parentKeySlot. The decryption operation requires valid authorization data to use the
that private key. If the authorization data is improper, the TPM MUST return the error TCPA_AUTHFAIL.

The TPM MUST then check the integrity of the decrypted data blob. The integrity check establishes that
the decrypted blob is a consistent TPM_SEALED_DATA structure created with by a TPM_Seal operation
on the same TPM that is attempting the TPM_Unseal and that the data blob has not been modified. The
TPM MUST check that the tpmProof parameter in the decrypted blob matches the TPM’s own
TCPA_PERSISTENT_FLAGS.tpmProof. If the decrypted blob fails the integrity checks, then the
TPM_Unseal operation MUST return the error TCPA_NOTSEALEDBLOB.

If the decrypted blob’s IsSealedToPCR parameter value is TRUE, then the TPM MUST ensure that
the PCRs to which the blob was sealed are the same as the PCRs’ values that exist at the time of
TPM_Unseal. To do this, the TPM will compute a composite hash using the pcrList parameter as the
input to the composite hashing algorithm (See 10.4.5).

If the resulting composite hash matches the decrypted blob’s digestAtUnseal parameter the TPM MUST
return the data parameter of the decrypted blob as the TPM_Unseal Secret output parameter, and the
decrypted blob’s digestAtCreation as the TPM_Unseal OldPcrHash output parameter. If the composite
hashes do no match, the TPM MUST return TCPA_WRONGPCRVAL.

If the pcrList.pcrCount parameter is 0, the TPM MUST not unseal the data, and simply return the
TCPA_NO_PCR_INFO error return status.

The TPM MUST check that the pcrList parameter is a consistent TCPA_PCR_SELECTION structure. If
not, the TPM MUST return the error code TCPA_BADINDEX.

If the decrypted blob’s IsSealedToPCR parameter value is FALSE, then the TPM does not need to
check PCR configuration. The TPM MUST return the data parameter of the decrypted blob as the
TPM_Unseal Secret output parameter, and the decrypted blob’s digestAtCreation as the TPM_Unseal
OldPcrHash output parameter (Although this OldPcrHash parameter has no meaning in this case).

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_BADINDEX PCR index does not exist.

TCPA_NOTSEALEDBLOB The encrypted blob is not a valid TPM_Sealed blob created by this TPM.

TCPA_INVALID_HANDLE The key handle does not exist or is not active.

TCPA_FAIL An internal error occurred, or a previous self-test failed.

TCPA_WRONGPCRVAL The named PCR value does not match the current PCR value.

TCPA Main Specification Page 133

Version 1.0 25 January, 2001

TCPA_NO_PCR_INFO The list of PCR indices to which the data is sealed has not been provided

TCPA_AUTHFAIL The authorization data is improper.

TCPA_DISABLED The TPM is disabled.

TCPA Main Specification Page 134

Version 1.0 25 January, 2001

7.2.3 TSS_Bind

Start of informative comment:

The TSS_Bind command can either generate data and create a secure storage bundle for that data or
merely create a secure storage bundle for data passed to it. The Generate provision may be used to
create a random key for usage externally by a bulk encryption engine or by the TPM for functions other
than those required by this specification.

End of informative comment.

IDL Definition

TCPA_RESULT TSS_Bind(
 [in] BOOL Generate,
 [in] UINT32 BlobSize,
 [in] UINT32 MaxOutBlobSize,
 [in] TCPA_PUBKEY PubKey,
 [in, size_is(BlobSize)] BYTE* Blob,
 [in,out] UINT32* OutBlobSize,
 [out, size_is(*OutBlobSize)] BYTE* OutBlob);

Type

TSS function

Parameters

Type Name Description

BOOL Generate TRUE means that TSS_BIND both generates and binds data.
FALSE means that TSS_BIND binds submitted data (and does
not generate it)

UINT32 BlobSize Size of the data being bound.

UINT32 MaxOutBlobSize The maximum size of the output blob

TCPA_PUBKEY PubKey Public key used to Bind the data

BYTE* Blob Data being bound.

UINT32* OutBlobSize Size of output blob

BYTE* OutBlob This is the bound data

Actions

TSS_Bind will take one of two actions depending on the Generate parameter.

The data size MUST be 44 bytes less than the modulus of the PubKey.

Generate = true

• Generate random data of the size specified by BlobSize

• Create PKCS#1 data format

• Encrypt data area using public key specified in PubKey

Generate = false

TCPA Main Specification Page 135

Version 1.0 25 January, 2001

• Format Blob parameter into PKCS#1 format

• Encrypt the data using the public key specified in PubKey

Both actions return the encrypted blob in the OutBlob parameter.

A check SHOULD be made that the bound data will not look to the TPM like a wrapped key (in which
case the TPM would not be able to TPM_UnBind the data).

Return Value Description

TCPA_SUCCESS Success

TCPA_FAIL Unknown error

TCPA Main Specification Page 136

Version 1.0 25 January, 2001

7.2.4 TPM_UnBind

Start of informative comment:

TPM_UnBind takes the data blob that is the result of a TSS_Bind command and decrypts it for export to
the User. The caller must authorize the use of the key that will decrypt the incoming blob.

End of informative comment.

IDL Definition

TCPA_RESULT TPM_UnBind(
 [in, out] TCPA_AUTH* PubAuth,
 [AUTH, in] UINT32 BlobSize,
 [AUTH, in] TCPA_KEY_SLOT keySlot,
 [AUTH, in] UINT32 MaxOutSize,
 [AUTH, in, size_is(BlobSize)] BYTE* Blob,
 [AUTH, in, out] UINT32* OutSize,
 [AUTH, size_is(*OutSize), out] BYTE* OutArea);

Type

TCPA protected capability; the user must provide authorization to use the key specified in the pubKey
parameter.

Parameters

Type Name Description

TCPA_AUTH* PubAuth HMAC authorization for TPM to use the private key to decrypt the
Blob.

UINT32 BlobSize Size of input blob

TCPA_KEY_SLOT keySlot Slot containing private key corresponding the to public key used to
bind the data in TSS_Bind

UINT32 MaxOutSize Maximum allowed output size

BYTE* Blob Encrypted Blob to be decrypted.

UINT32* Outsize Length of output data

BYTE* OutArea The secret that was inside the Blob, now decrypted.

Actions

The TPM SHALL perform the following:

• Validate the authorization to use the key pointed to by keySlot

• Decrypt the Blob using the key pointed to by keySlot

• Return the decrypted information in parameter OutArea

Return Value Description

TCPA_SUCCESS Success.

TCPA_AUTHFAIL Authorization failed.

TCPA_FAIL Unknown error

TCPA Main Specification Page 137

Version 1.0 25 January, 2001

7.2.5 TPM_CreateWrapKey

Start of informative comment:

The TPM_CreateWrapKey command both generates and creates a secure storage bundle for asymmetric
keys.

End of informative comment.

IDL Definition

TCPA_RESULT TPM_CreateWrapKey(
 [in, out] TCPA_AUTH* KeySlotAuth,
 [AUTH, in] TCPA_ENCAUTH DataUsageAuth,
 [AUTH, in] TCPA_ENCAUTH DataMigrationAuth,
 [AUTH, in] TCPA_KEY_SLOT KeySlot,
 [AUTH, in] UINT16 Type,
 [AUTH, in] TCPA_KEYUSAGE KeyUsage,
 [AUTH, in] TCPA_DATAUSAGE DataUsage,
 [AUTH, in, out] TCPA_KEY keyInfo;

Type

TCPA protected capability; user must provide authorization to use the key pointed to by keySlot.

Parameters

Type Name Description

TCPA_AUTH KeySlotAuth Authorization to use key in keySlot. Session type MUST
be OSAP.

TCPA_ENCAUTH DataUsageAuth Encrypted authorization data to be used with the new key.

TCPA_ENCAUTH DataMigrationAuth Encrypted data used to authorize migration of the newly
generated key.

TCPA_KEY_SLOT KeySlot Public key used to wrap the generated key

UINT16 Type Used for nonstandard keys.

TCPA_KEYUSAGE KeyUsage Indicates the usage of the key

TCPA_DATAUSAGE DataUsage Indicates how the data will be used

TCPA_KEY keyInfo The input structure contains all parameters except pubkey
and privkey (which are NULL), to specify the size and type
of the new key. The output structure also contains pubkey
(the public part of the new key) and privkey (the wrapped
private key).

Descriptions

This command requires the encryption of two parameters. To create two XOR strings the caller takes the
two nonces in use by the OSAP session and concatenates one nonce and the session shared secret and
then hashes the result. The hash from the shared secret and the odd numbered hash (generated by the
caller) encrypts the DataUsageAuth. The hash from the shared secret and the even numbered hash
(generated by the TPM) encrypts the DataMigrationAuth.

Actions

The TPM SHALL do the following:

TCPA Main Specification Page 138

Version 1.0 25 January, 2001

• Validate the authorization to use the key pointed to by KeySlot. Return TCPA_BADAUTH on any
error.

• If the key in KeySlot is migratable and requested key is non-migratable then return
TCPA_MIGRATEFAIL.

• Validate the key in KeySlot is a storage key

• Validate all other parameters

• Any error on above checks return TCPA_BAD_PARAMETER

• Create the two XOR patterns by using the session key and the nonces for this transaction

• Decrypt the DataUsageAuth and DataMigrationAuth parameters

• Generate asymmetric key according to parameters sent

• Create a TCPA_KEY structure using the key pointed to by KeySlot as the key for any encryptions

• Return the TCPA_KEY structure in the keyInfo parameter

Return Value Description

TCPA_SUCCESS Success

TCPA_FAIL General error

TCPA_BAD_PARAMETER One of the parameter was in error

TCPA_AUTHFAIL The authorization to use keySlot failed

TCPA Main Specification Page 139

Version 1.0 25 January, 2001

7.2.6 TPM_CreateWrapKeyToPcr

Start of informative comment:

The TPM_CreateWrapKeyToPcr is similar to the TPM_CreateWrapKey command except that
TPM_CreateWrapKeyToPcr locks the data blob to a PCR value as well as authorization data, and wraps
only with a non-migratable key. This command generates and creates a secure storage bundle for
asymmetric keys. .

End of informative comment.

IDL Definition

TCPA_RESULT TPM_CreateWrapKeyToPcr(
 [in, out] TCPA_AUTH* KeySlotAuth,
 [AUTH, in] UINT32 MaxWrapSize,
 [AUTH, in] UINT32 targetPCRSize,
 [AUTH, in, size_is(targetPCRSize)] BYTE* targetPCR,
 [AUTH, in] TCPA_ENCAUTH DataUsageAuth,
 [AUTH, in] TCPA_ENCAUTH DataMigrationAuth,
 [AUTH, in] TCPA_COMPOSITE_HASH targetPCRHash,
 [AUTH, in] TCPA_KEY_SLOT KeySlot,
 [AUTH, in] UINT16 Type,
 [AUTH, in] TCPA_KEYUSAGE KeyUsage,
 [AUTH, in] TCPA_DATAUSAGE DataUsage,
 [AUTH, in, out] TCPA_KEY keyInfo,

Type

TCPA protected capability; the user must provide authorization to use the key indicated by keySlot.

Parameters

Type Name Description

TCPA_AUTH KeySlotAuth Authorization to use key in keySlot. Session type
MUST be OSAP.

UINT32 MaxWrapSize The maximum size of the wrap area

UINT32 targetPCRSize This SHALL be the size of the targetPCR parameter

BYTE* targetPCR This SHALL be a TCPA_PCR_SELECTION
structure containing the list of the indexes of the
PCRs that are to be reported.

TCPA_ENCAUTH DataUsageAuth Encrypted authorization data to be used with the
new key.

TCPA_ENCAUTH DataMigrationAuth Encrypted data used to authorize migration of the
newly generated key.

TCPA_COMPOSITE_HASH targetPCRHash This SHALL be the composite digest of the PCR
indexes and values to which parameter blob is to be
sealed. This must have been constructed according
to the algorithm described in 10.4.5 using the target
PCR values.

TCPA_KEY_SLOT KeySlot Public key used to wrap the generated key

UINT16 Type Used for nonstandard keys.

TCPA_KEYUSAGE KeyUsage Indicates the usage of the key

TCPA Main Specification Page 140

Version 1.0 25 January, 2001

TCPA_DATAUSAGE DataUsage Indicates how the data will be used

TCPA_KEY keyInfo The input structure contains all parameters except
pubkey and privkey (which are NULL), to specify the
size and type of the new key. The output structure
also contains pubkey (the public part of the new
key) and privkey (the wrapped private key).

Descriptions

This command requires the encryption of two parameters. To create two XOR strings the caller takes the
two nonces in use by the OSAP session and concatenates one nonce and the session shared secret and
then hashes the result. The hash from the shared secret and the odd numbered hash (generated by the
caller) encrypts the DataUsageAuth. The hash from the shared secret and the even numbered hash
(generated by the TPM) encrypts the DataMigrationAuth.

Actions

The TPM SHALL do the following:

• Validate the authorization to use the key pointed to by KeySlot. Return TCPA_BADAUTH on any
error.

• If the key in KeySlot is migratable and requested key is non-migratable

• Validate the key in KeySlot is a storage key

• Check the validity of the migration nonce in KeySlot

• Validate all other parameters.

• Any error on above checks return TCPA_BAD_PARAMETER

• Create the two XOR patterns by using the session key and the nonces for this transaction

• Decrypt the DataUsageAuth and DataMigrationAuth parameters

• Generate asymmetric key according to parameters sent

• Create the composite digest: If the targetPCRSize parameter value is 0x00, the TPM MUST
return the error code TCPA_BADINDEX. Otherwise, the TPM will compute a
TCPA_COMPOSITE_HASH value, using the targetPCR TCPA_PCR_SELECTION structure, to
fill the TPM_SEALED_DATA.digestAtCreation member variable. The TPM MUST compute this
TCPA_COMPOSITE_HASH value using the targetPCR parameter as the input to the algorithm
described in 10.4.5. The TPM MUST set the TPM_SEALED_DATA.IsSealedToPCR value to
TRUE.

The TPM MUST check that the targetPCR parameter is a consistent TCPA_PCR_SELECTION structure.
If not, the TPM MUST return the error code TCPA_BADINDEX.

• Create a TCPA_KEY structure using the key pointed to by KeySlot as the key for any encryptions

• Return the TCPA_KEY structure in the KeyInfo parameter

Return Value Description

TCPA_SUCCESS Success

TCPA_FAIL General error

TCPA_BAD_PARAMETER One of the parameter was in error

TCPA_BADAUTH The authorization to use keySlot failed

TCPA Main Specification Page 141

Version 1.0 25 January, 2001

7.2.7 TSS_WrapKey

Start of informative comment:

The TSS_WrapKey command creates a migratable blob for a key that has been presented externally.
The creator of the key can prevent migration by the User by wrapping it with a non-migratable storage key
and loading random data for the MigrationAuthorizationData. However, the internal bit will still be set as
migratable. This allows delegation of a key without giving the delegator the right to further delegate.
Because the key was created elsewhere, there is no need to return the PubKey of the key being
wrapped, and because a public key is used for the wrapping, external to the TPM, there is no need for
authorization data for the wrapping key to be passed.

End of informative comment.

IDL Description

TCPA_RESULT TSS_WrapKey(
 [in] UINT32 MaxWrapSize,
 [in] UINT32 KeyToWrapSize,
 [in] TCPA_SECRET DataMigrationAuth,
 [in] TCPA_SECRET DataUsageAuth,
 [in] TCPA_PUBKEY PubKey,
 [in] TCPA_KEYUSAGE KeyUsage,
 [in] TCPA_AUTHDATA_USAGE DataUsage,
 [in, size_is(KeyToWrapSize)] BYTE* KeyToWrap,

[in, out] UINT32* WrapSize,
 [out, size_is(*WrapSize)] BYTE* Wrap);
Type

TSS capability

Parameters

Type Name Description

UINT32 MaxWrapSize The maximum size of the Wrap area

UINT32 KeyToWrapSize The size of the KeyToWrap parameter

TCPA_SECRET DataMigrationAuth The data migration secret

TCPA_SECRET DataUsageAuth The data usage secret

TCPA_PUBKEY PubKey Public key used to wrap the KeyToWrap parameter

TCPA_KEYUSAGE KeyUsage Tells if key is a storage or usage key

TCPA_AUTHDATA_
USAGE

DataUsage Sets the frequency authorization data is needed for
this key.

BYTE* KeyToWrap External key being wrapped.

UINT32* WrapSize Size of wrapped data

BYTE* Wrap Result of wrapping key.

Descriptions

A TSS function

Actions

TSS_WrapKey is used for wrapping up keys that were generated somewhere other than the TPM so that
they can be used by the TPM. Such keys will always be migratable. Wrapping can be done entirely

TCPA Main Specification Page 142

Version 1.0 25 January, 2001

outside the TPM, by software, hence this is a TSS function. Wrapping is always done by a public key,
hence there is no need for authorization to perform this function.

Return Value Description

TCPA_SUCCESS Success.

TCPA_FAIL Failure.

TCPA Main Specification Page 143

Version 1.0 25 January, 2001

7.2.8 TSS_WrapKeyToPcr

Start of informative comment:

The TSS_WrapKeyToPcr command is similar to the TSS_WrapKey command except that it has an
additional requirement for authorization of use: a PCR value must match the value given at blob-creation
time. Thus, TSS_WrapKeyToPcr creates a migratable blob for a key that has been presented externally.
Both authorization data and a given PCR value are set as part of the authorization requirement.

End of informative comment.

IDL Description

TCPA_RESULT TSS_WrapKeyToPcr(
 [in] UINT32 MaxWrapSize,
 [in] UINT32 KeyToWrapSize,
 [in] UINT32 targetPCRSize,
 [in] TCPA_SECRET DataMigrationAuth,
 [in] TCPA_SECRET DataUsageAuth,
 [in] TCPA_COMPOSITE_HASH targetPCRHash,
 [in] TCPA_PUBKEY PubKey,
 [in] TCPA_KEYUSAGE KeyUsage,
 [in] TCPA_AUTHDATA_USAGE DataUsage,
 [in, size_is(targetPCRSize)] BYTE* targetPCR,
 [in, size_is(KeyToWrapSize)] BYTE* KeyToWrap,

[in, out] UINT32* WrapSize,
 [out, size_is(*WrapSize)] BYTE* Wrap);

Type

TSS capability

Parameters

Type Name Description

UINT32 MaxWrapSize The maximum size of the wrap parameter

UINT32 KeyToWrapSize The size of the KeyToWrap parameter

UINT32 targetPCRSize The size of the targetPCR parameter

TCPA_SECRET DataMigrationAuth The authorization value to permit use

TCPA_SECRET DataUsageAuth The authorization value to permit migration

TCPA_COMPOSITE
_HASH

targetPCRHash This SHALL be the composite digest of the PCR
indexes and values to which parameter blob is to be
sealed. This must have been constructed according to
the algorithm described in 10.4.5 using the target PCR
values.

TCPA_PUBKEY PubKey Public key used to wrap the passed key

TCPA_KEYUSAGE keyUsage Tells if key is a storage or signature key

TCPA_AUTHDATA_
USAGE

DataUsage Sets the frequency authorization data is needed for
this key.

BYTE* targetPCR This SHALL be a TCPA_PCR_SELECTION structure
containing the list of the indexes of the PCRs to which
the blob parameter is to be sealed.

TCPA Main Specification Page 144

Version 1.0 25 January, 2001

BYTE* KeyToWrap External key being wrapped. Normal format would be
TCPA_KEY

UINT32* WrapSize Size of wrapped data

BYTE* Wrap Result of wrapping key.

Actions

TSS_WrapKeyToPcr behaves much the same as TSS_WrapKey.

It takes a key generated external to the TPM and wraps it with PubKey. Such keys are always migratable.
Use of the key by the TPM is restricted to such time as the PCR value referred to is in the correct state
and the correct authorization data is applied.

Return Value Description

TCAP_SUCCESS Success.

TCPA_FAIL Failure.

TCPA Main Specification Page 145

Version 1.0 25 January, 2001

7.2.9 TPM_LoadKey

Start of informative comment:

Before the TPM can use a key to either wrap, unwrap, bind, unbind, seal, unseal, sign or perform any
other action, it needs to be present in the TPM. The TPM_LoadKey function loads the key into the TPM
for further use. It is assumed that upper level software provides management of key slots within the TPM.
As such, the index of slot to load the key is passed as part of the authenticated parameter list.

The load command must maintain a record of whether any previous key in the key hierarchy was bound
to a PCR.

End of informative comment.

IDL Description

TCPA_RESULT TPM_LoadKey(
 [in, out] TCPA_AUTH* ParentKeyAuth,
 [AUTH, in] TCPA_KEY_SLOT InKeySlot,
 [AUTH, in] TCPA_KEY_SLOT ParentKeySlot,
 [AUTH, in] UINT32 InKeyBlobSize,
 [AUTH, in] UINT32 pcrListSize,
 [AUTH, in, size_is(pcrListSize)] BYTE* pcrList,
 [AUTH, in] TCPA_PUBKEY pubkey,
 [AUTH, in] TCPA_PRIVKEY privKey);
Type

TCPA protected capability; user must provide authorization to use the parent key pointed to by
ParentKeySlot.

Parameters

Type Name Description

TCPA_AUTH* ParentKeyAuth Authorization to use the storage key to decrypt the
incoming key.

TCPA_KEY_SLOT InKeySlot Index to internal TPM slot where decrypted
InkeyBlob is loaded.

TCPA_KEY_SLOT ParentKeySlot TPM slot index of parent key.

UINT32 InKeyBlockSize Size of the InKeyBlob parameter

UINT32 pcrListSize This SHALL be the size of the pcrList parameter

BYTE* pcrList This SHALL be the TCPA_PCR_SELECTION
structure filled in with the PCR indices necessary
to load the key

TCPA_PUBKEY pubKey This SHALL be the public portion of the key to be
loaded

TCPA_PRIVKEY privKey This SHALL be he private portion of the key to be
loaded

Actions

The TPM SHALL perform the following steps:

• Validate the authorization to use the key in ParentKeySlot

TCPA Main Specification Page 146

Version 1.0 25 January, 2001

• Extract the encrypted TCPA_STORE_ASYMKEY from privK ey

• Decrypt TCPA_STORE_ASYMKEY using the key pointed to by ParentKeySlot

• Validate the integrity of pubKey and decrypted TCPA_STORE_ASYMKEY

• Load PCR indices. The TPM SHALL NOT check current PCR state during the TPM_LoadKey
command

• Perform any processing necessary to make TCPA_STORE_ASYMKEY key available for
operations

• Load key and key information into slot pointed to by InKeySlot. Any previous occupant of
InKeySlot is overwritten.

• Set InKeySlot.PCRParent to ParentKeySlot.PCRParent. If ParentKeySlot.IsWrappedToPCR is
TRUE set InKeySlot.PCRParent to TRUE.

If the decrypted InKeyBlob’s IsWrappedToPCR parameter is TRUE,

If pcrList.pcrCount is 0, the TPM MUST return the TCPA_NO_PCR_INFO error.

Otherwise, the TPM MUST store the information contained in the pcrList parameter (the indices of the
PCRs to which the key in InKeyBlob is wrapped) together with the key that results from the decryption
of InKeyBlob. The PCR indices information will thereafter be available to any command that needs to
check the PCR configuration before using the key.

Every time before the loaded key is used, the pcrList indices from TPM_LoadKey and the PcrDigest
from the key’s TCPA_STORE_ASYMKEY structure MUST be used to verify that the current PCR
state is correct. The TPM MUST ensure that the PCRs to which the key was sealed are the same as
the PCRs’ values that exist at the time of key usage. To do this, the TPM will compute a composite
hash using the pcrList parameter as the input to the composite hashing algorithm (See 10.4.5).

If the resulting composite hash matches the PcrDigest from the key’s TCPA_STORE_ASYMKEY
structure, the TPM is permitted to use the key. Otherwise, if the composite hashes do not match, the
TPM is NOT permitted to use the key in the current PCR state, and the TPM MUST return
TCPA_WRONGPCRVAL.

If the decrypted InKeyBlob’s IsWrappedToPCR parameter is FALSE,

The TPM MUST ignore the pcrList parameter, and proceed with loading the key.

The TPM SHALL enforce the use of slot 0 for the SRK only. Attempts to load into slot 0 fail with
TCPA_FAIL.

Return Value Description

TCPA_SUCCESS Success.

TCPA_NOSPACE No room to load key.

TCPA_FAIL Failure.

TCPA_NO_PCR_INFO The list of PCR indices to which the key is wrapped has not been provided

TCPA_WRONGPCRVAL The named PCR value does not match the current PCR value.

TCPA Main Specification Page 147

Version 1.0 25 January, 2001

7.2.10 TPM_GetPubKey

Start of informative comment:

The owner of a key may wish to obtain the public key value from a loaded key. This information may have
privacy concerns so the command must have authorization from the key owner.

End of informative comment.

IDL Description

TCPA_RESULT TPM_GetPubKey(
 [in, out] TCPA_AUTH* KeyAuth,
 [AUTH, in] TCPA_KEY_SLOT KeySlot,
 [AUTH, out] TCPA_PUBKEY* pubKey);

Type

TCPA protected capability; user must provide authorization to use the key pointed to by KeySlot.

Parameters

Type Name Description

TCPA_AUTH* KeyAuth Authorization to use the key in KeySlot

TCPA_KEY_SLOT KeySlot Index to internal TPM slot that contains public key

TCPA_PUBKEY* pubKey Public key of key loaded KeySlot

Actions

The TPM SHALL perform the following steps:

• Validate the authorization to use the key in KeySlot

• Create a TCPA_PUBKEY structure and return

Return Value Description

TCPA_SUCCESS Success.

TCPA_FAIL Failure.

TCPA Main Specification Page 148

Version 1.0 25 January, 2001

7.2.11 TPM_CreateMigrationBlob

Informative Comment:

To migrate keys from one TPM to another for backup, upgrade or to clone a key on another platform, the
TPM needs to create a data blob that another TPM can deal with. This is done by loading in a backup
public key that will be used by the TPM to create a new data blob for a migratable key.

The TPM Owner does the selection and authorization of migration keys. The TPM Owner performs the
selection and authorization at any time prior to the execution of TPM_CreateMigrationBlob by performing
the TPM_AuthorizeMigrationKey command.

End of informative comment

IDL Definition

TCPA_RESULT TPM_CreateMigrationBlob(
 [in, out] TCPA_AUTH* KeyMigrateAuth,
 [AUTH, in] TCPA_KEY_SLOT keySlot,
 [AUTH, in] UINT32 BlobMaxSize,
 [AUTH, in] TCPA_MIGRATIONKEYAUTH migrationStructure,
 [AUTH, in] TCPA_PUBKEY MigrationWrapKey,
 [AUTH, in, out] UINT32* BlobSize,
 [AUTH, in, out] UINT32* RandomSize,
 [AUTH, out, size_is(*RandomSize)] BYTE* Random,
 [AUTH, out, size_is(*BlobSize)] BYTE* Blob);

Type

TCPA protected capability; user MUST provide authorization to use the key pointed to by keySlot.

Parameters

Type Name Description

TCPA_AUTH* KeyMigrateAuth Authorization to migrate the key in key slot. The
authorization calculation MUST use the migration
authorization data

TCPA_KEY_SLOT keySlot The slot containing the private key to be migrated

UINT32 BlobMaxSize This SHALL be the maximum size of the output Blob
parameter

TCPA_MIGRATIONKEY
AUTH

migrationStructure This SHALL be the migration key and authorization
to use the migration key

TCPA_PUBKEY MigrationWrapKey This SHALL be the public key that is destination.
This key MUST be a 2048 bit RSA key or higher.

UINT32* BlobSize This SHALL be the size of the output Blob
parameter

UINT32* RandomSize This SHALL be the size of the Random parameter

BYTE* Random A random string used to hide the key being backed
up from the backup authority. It is the responsibility
of the caller to properly store and protect this value.

BYTE* Blob This SHALL be the encrypted and XOR
TCPA_STORE_ASYMKEY structure

TCPA Main Specification Page 149

Version 1.0 25 January, 2001

Actions

The TPM SHALL perform the following actions:

• Validate that the authorization to migrate the key in keyslot. The validation MUST use the
migrationAuthorization secret.

• Validate that the key in keySlot is not marked as non-migratable

• Calculate a digest of Migration.migrationKey and tpmProof and compare to Migration.digest

• Create m1 by filling in a TCPA_MIGRATE_ASYMKEY structure from key in keySlot.

• Create k1 and k2 by splitting the prime factor field from TCPA_MIGRATE_ASYMKEY.data into 2
parts. k1 is 20 bytes long, k2 contains the remainder of the prime factor.

• Create o1 (which SHALL be 229 bytes for a 2048 bit RSA key) by performing the OAEP encoding of
m1 using OAEP parameters of

o m = m1

o pHash = migration authorization (the field removed from TCPA_STORE_ASYMKEY to create
TCPA_MIGRATE_ASYMKEY)

o seed = s1 = k1

• Create r1 a random value from the TPM RNG. The size of r1 MUST be the size of o1. Return r1 in the
Random parameter.

• Create x1 by XOR of o1 with r1

• Create o2 (which SHALL be 255 bytes) by performing the OAEP encoding of x1 using OAEP
parameters of

o m = x1

o p = “Migration Blob” a ASCII string null terminated

o seed =s2 = 20 bytes from TPM RNG

• Create f1 by filling in a TCPA_INTERNAL_HDR structure.

• Create b1 by concatenating f1 and o2

• Encrypt b1 with the MigrationWrapKey

The TPM does not check the PCR values when migrating values locked to a PCR.

Return Value Description

TCPA_SUCCESS Success

TCPA_SHORTRANDOM Random string not long enough

TCPA_KEYNOTLOADED No Backup key loaded

TCPA_KEYNOTFOUND Key to be backed up not found

TCPA_MIGRATEFAIL Migration authorization failed

TCPA_FAIL Other failure

TCPA Main Specification Page 150

Version 1.0 25 January, 2001

7.2.12 TPM_MigrateMigrationBlob

Informative Comment:

This command allows changing of the key that is wrapping the encrypted migration blob. This operation
must be a TPM command to allow a migration entity to prove that it is performing this operation inside a
TPM.

End of informative comment

IDL Definition

TCPA_RESULT TPM_MigrateMigrationBlob(
 [in, out] TCPA_AUTH* keySlotAuth,
 [AUTH, in] TCPA_KEY_SLOT keySlot,
 [AUTH, in] UINT32 outBlobMaxSize,
 [AUTH, in] UINT32 inBlobSize,
 [AUTH, in] TCPA_PUBKEY ReWrapKey,
 [AUTH, in, out] UINT32* outBlobSize,
 [AUTH, in, size_is(inBlobSize)] BYTE* inBlob,
 [AUTH, out, size_is(*outBlobSize)] BYTE* outBlob);
Type

TPM protected capability; user must provide authorization to use key pointed to by keySlot

Parameters

Type Name Description

TCPA_AUTH* keySlotAuth Authorization to migrate the key in key slot. The authorization
calculation MUST use the migration authorization data

TCPA_KEY_SLOT keySlot The slot containing the key that will unwrap the migration blob

UINT32 outBlobMaxSize This SHALL be the maximum size of the outBlob parameter

UINT32 inBlobMax This SHALL be the size of the inBlob parameter

TCPA_PUBKEY ReWrapKey This SHALL be the public key that will rewrap the inBlob
parameter

UINT32* outBlobSize This SHALL be the size of the output Blob parameter

BYTE* inBlob This SHALL be the migration blob encrypted by the public key
of the key pointed to by keySlot

BYTE* outBlob This SHALL be the migration blob encrypted by the
ReWrapKey

Actions

The TPM SHALL perform the following actions:

• Validate the authorization to use the key in keySlot

• Create d1 by decrypting the inBlob area using the key in keySlot

• Create o2 by removing TCPA_INTERNAL_HDR from d1

• Create m2 and p2hash by performing OAEP decoding of o2

• Verify that p2hash equals the SHA1 of “Migration Blob” an ASCII null terminated string

• Create outBlob by encrypting d1 with ReWrapKey

TCPA Main Specification Page 151

Version 1.0 25 January, 2001

Return Value Description

TCPA_SUCCESS Success

TCPA_AUTHFAIL Authorization to use the key pointed to by key slot was denied

TCPA_FAIL Other failure

TCPA Main Specification Page 152

Version 1.0 25 January, 2001

7.2.13 TPM_LoadMigrationBlob

Start of informative comment:

This command takes a migration blob and creates a normal wrapped blob. The migrated blob must be
loaded into the TPM using the normal TPM_LoadKey function.

End of informative comment.

IDL Definition

TCPA_RESULT TPM_LoadMigrationBlob(
 [in, out] TCPA_AUTH* keySlotAuth,
 [AUTH, in] TCPA_KEY_SLOT keySlot,
 [AUTH, in] UINT32 outBlobMaxSize,
 [AUTH, in] UINT32 inBlobSize,
 [AUTH, in] UINT32 RandomSize,
 [AUTH, in, size_is(RandomSize)] BYTE* random,
 [AUTH, in, size_is(inBlobSize)] BYTE* inBlob,
 [AUTH, in, out] UINT32* outBlobSize,
 [AUTH, out, size_is(*outBlobSize)] BYTE* outBlob);

Type

TCPA protected capability; user must provide authorization

Parameters

Type Name Description

TCPA_AUTH* keySlotAuth Authorization to use the key in keySlot

TCPA_KEY_SLOT keySlot This SHALL be the pointer to the key to perform the unwrap

UINT32 outBlobMaxS
ize

This SHALL be the maximum size of the outBlob parameter

UINT32 inBlobSize This SHALL be the size of the inBlob parameter

UINT32 randomSize This SHALL be the size of the random parameter

BYTE* random This SHALL be the random string that provides the XOR for the
area

BYTE* inBlob This SHALL be the encrypted and XOR migration blob

UINT32 outBlobSize This SHALL be the size of the outBlob parameter

BYTE* outBlob This SHALL be the normally wrapped key blob

Action

The TPM SHALL perform the following:

• Validate the authorization to use the key in keySlot

• Create d1 by decrypting the inBlob area using the key in keySlot

• Create o2 by removing TCPA_INTERNAL_HDR from d1

• Create m2 and p2hash by performing OAEP decoding of o2

• Verify that p2hash equals the SHA1 of “Migration Blob” an ASCII null terminated string

TCPA Main Specification Page 153

Version 1.0 25 January, 2001

• Create o1 by XOR m2 and random parameter

• Create m1, seed and pHash by OAEP decoding o1

• Create k1 by combining seed and the TCPA_MIGRATE_ASYMKEY.data field

• Create d2 a TCPA_STORE_ASYMKEY structure by inserting pHash as the migration authorization
field. Set the TCPA_STORE_ASYMKEY.data field to k1

• Create outBlob by performing TCPA_Internal_Encrypt on d2 using the key in keySlot

Return Value Description

TCPA_SUCCESS Success.

TCPA_FAIL Failure.

TCPA Main Specification Page 154

Version 1.0 25 January, 2001

7.2.14 TPM_AuthorizeMigrationKey

Start of informative comment:

To allow the TPM owner to specify which migration facility they will use and allow users to migrate
information without further involvement with the TPM owner this command creates an authorization blob.

The TPM does no validation of the migration key. It is the responsibility of the TPM Owner to determine
the validity of the key and if it is appropriate for use by the TPM.

End of informative comment.

IDL Definition

TCPA_RESULT TPM_AuthorizeMigrationKey(
 [in, out] TCPA_AUTH* ownerAuth,
 [AUTH, in] TCPA_PUBKEY migrationKey,
 [AUTH, in] UINT32 outBlobMaxSize,
 [AUTH, in, out] UINT32* outBlobSize,
 [AUTH, out, size_is(*outBlobSize)] BYTE* outBlob);

Type

TCPA protected capability; user must provide authorization from the TPM Owner

Parameters

Type Name Description

TCPA_AUTH* ownerAuth Authorization to use the TPM

TCPA_PUBKEY migrationKey This SHALL be the public key of the migration facility

UINT32 outBlobSize This SHALL be the size of the outBlob parameter

BYTE* outBlob This SHALL be the normally wrapped key blob

Action

The TPM SHALL perform the following:

• Validate the authorization to use the TPM by the TPM Owner

• Create a digest value of migrationKey, TCPA_PERSISTENT_FLAGS.tpmProof

• Return the TCPA_MIGRATIONKEYAUTH structure in the outblob parameter

Return Value Description

TCPA_SUCCESS Success.

TCPA_FAIL Failure.

TCPA Main Specification Page 155

Version 1.0 25 January, 2001

7.3 TPM Optional Functions: Maintenance

Start of informative comment:

Maintenance is different from backup/migration, because maintenance provides for the migration of both
migratory and non-migratory data. Maintenance is an optional TPM function, but if a TPM enables
maintenance, the maintenance capabilities in this specification are mandatory – no other migration
capabilities shall be used. Maintenance necessarily involves the manufacturer of a Subsystem.

When maintaining computer systems, it is sometimes the case that a manufacturer or its representative
needs to replace a Subsystem containing a TPM. Some manufacturers consider it a requirement that
there be a means of doing this replacement without the loss of the non-migratable keys held by the
original TPM.

The user needs assurance that the information is properly protected against interception or a hostile
manufacturer therefore the creation of the maintenance information is fully defined. Since it is inherently
NOT a process that can be performed between different models of systems, let alone different
manufacturers the process which the manufacturer uses to install maintenance information is defined only
at a high level.

Any maintenance process must have certain properties. Specifically, any migration to a replacement
Subsystem must require collaboration between the Owner of the existing Subsystem and the
manufacturer of the existing Subsystem. Further, the procedure must have adequate safeguards to
prevent a non-migratable key being transferred to multiple Subsystems.

The maintenance capabilities TPM_CreateMaintenanceArchive and TPM_LoadMaintenanceArchive
enable the transfer of all Protected Storage data from a Subsystem containing a first TPM (TPM1) to a
Subsystem containing a second TPM (TPM2):

A manufacturer places a public key in non-volatile storage into its TPMs at manufacture time.

The Owner of TPM1 uses TPM_CreateMaintenanceArchive to create a maintenance archive that enables
the migration of all data held in Protected Storage by TPM1. The Owner of TPM1 must provide his or her
authorization to the Subsystem. The TPM then creates the TCPA_MAINTENANCE_ASYMKEY structure
and follows the process defined.

The XOR process prevents the manufacturer from ever obtaining plaintext TPM1 data.

The additional random data provides a means to assure that a maintenance process cannot subvert
archive data and hide such subversion.

The random mask can be generated by two methods, either using the TPM RNG or MGF1 on the TPM
Owners authorization data.

The manufacturer takes the maintenance blob, decrypts it with its private key, and satisfies itself that the
data bundle represents data from that Subsystem manufactured by that manufacturer. Then the
manufacturer checks the endorsement certificate of TPM2 and verifies that it represents a platform to
which data from TPM1 may be moved.

The manufacturer dispatches two messages.

The first message is made available to CAs, and is a revocation of the TPM1 endorsement certificate.

The second message is sent to the Owner of TPM2, which will communicate the SRK, tpmProof and the
manufacturers permission to install the maintenance blob only on TPM2

The Owner uses TPM_LoadMaintenanceArchive to install the archive copy into TPM2, and overwrite the
existing TPM2-SRK and TPM2-tpmProof in TPM2. TPM2 overwrites TPM2-SRK with TPM1-SRK, and
overwrites TPM2-tpmProof with TPM1-tpmProof.

Note that the command TPM_KillMaintenanceFeature prevents the operation of
TPM_CreateMaintenanceArchive and TPM_LoadMaintenanceArchive. This enables an Owner to block
maintenance (and hence the migration of non-migratory data) either to or from a TPM.

TCPA Main Specification Page 156

Version 1.0 25 January, 2001

It is required that a manufacturer takes steps that prevent further access of migrated data by TPM1. This
may be achieved by deleting the existing Owner from TPM1, for example.

End of informative comment.

Any migration of non-migratory data protected by a Subsystem SHALL require the cooperation of both the
Owner of that non-migratory data and the manufacturer of that Subsystem. That manufacturer SHALL
NOT cooperate in a maintenance process unless the manufacturer is satisfied that non-migratory data will
exist in exactly one Subsystem. A TPM SHALL NOT provide capabilities that support migration of non-
migratory data unless those capabilities are described in the TCPA specification.

The maintenance feature MUST move the following

• TCPA_KEY for SRK

• TCPA_PERSISTENT_FLAGS.tpmProof

• TPM Owners auth

• Hash of PUBEK

TCPA Main Specification Page 157

Version 1.0 25 January, 2001

7.3.1 TPM_CreateMaintenanceArchive

Start of informative comment:

This command creates the MaintenanceArchive. It can only be executed by the owner, and may be shut
off with the TPM_KillMaintenanceFeature command.

End of informative comment.

IDL Definition

TCPA_RESULT TPM_CreateMaintenanceArchive(
 [in, out] TCPA_AUTH* TpmOwnerAuth,
 [AUTH, in] UINT32 ArchiveMaxSize,
 [AUTH, in] UINT32 RandomMaxSize,
 [AUTH, in] BOOL GenerateRandom,
 [AUTH, in, out] UINT32* ArchiveSize,
 [AUTH, in, out] UINT32* randomSize,
 [AUTH, out, size_is(*randomSize)] BYTE* RandomData,
 [AUTH, out, size_is(*ArchiveSize)] BYTE* Archive);
Type

TCPA protected capability; user must provide authentication from the TPM Owner.

Parameters

Type Name Description

TCPA_AUTH TpmOwnerAuth Owner’s authorization to make a maintenance backup.

UINT32 ArchiveMaxSize Maximum size for archive.

UINT32 RandomMaxSize Maximum size for the random parameter

BOOL GenerateRandom This SHALL indicate if TRUE that the TPM uses the RNG to
create the random string. If FALSE the TPM uses the TPM
Owner authorization to create the random string.

UINT32* ArchiveSize Size of archive being returned.

UINT32 randomSize This SHALL be the size of the RandomData parameter, the
MUST be a minimum of 256 bytes.

BYTE* RandomData Random data to XOR with result before encrypting with
manufacturer’s public key. Only returned when the
GenerateRandom is TRUE.

BYTE* Archive Archive being returned.

Actions

Upon authorization being confirmed this command does the following:

• Validates that the TCPA_PERSISTENT_FLAGS.AllowMaintenance is TRUE.

• Validates the TPM Owner authorization.

• Create m1 by filling in a TCPA_MAINTENANCE_ASYMKEY structure using the SRK

• Create o1 (which SHALL be 208 bytes for a 2048 bit RSA key) by performing the OAEP encoding of
m1 using OAEP parameters of

o m = m1

TCPA Main Specification Page 158

Version 1.0 25 January, 2001

o P = TPM Owner authorization

o seed = s1 = 20 bytes from the TPM RNG

• If GenerateRandom = TRUE

o Create r1 by obtaining values from the TPM RNG. The size of r1 MUST be the same size as
o1. Set RandomData parameter to r1

• If GenerateRandom = FALSE

o Create r1 by applying MGF1 to the TPM Owner authorization data. The size of r1 MUST be
the same size as o1. Set RandomData parameter to null.

• Create m2 by XOR of o1 and r1

• Create o2 (which SHALL be 255 bytes for a 2048 bit RSA key) by performing the OAEP encoding of
m2 using OAEP parameters of

o m = m2

o P = PUBEK

o seed = s2 = 20 bytes from the TPM RNG

• Create f1 by filling in a TCPA_INTERNAL_HDR structure.

• Create b1 by concatenating f1 and o2

• Encrypt b1 with the TCPA_PERSISTENT_FLAGS.ManufacturerPub

Return Value Description

TCPA_SUCCESS Success.

TCPA_FAIL Failure.

TCPA_AUTHFAIL TPM Owner authorization failed.

TCPA_DISABLED The TPM is disabled

TCPA_DISABLED_CMD The AllowMaintenance flag is FALSE

TCPA Main Specification Page 159

Version 1.0 25 January, 2001

7.3.2 TPM_LoadMaintenanceArchive

Start of informative comment:

This command loads in a Maintenance archive that has been massaged by the manufacturer to load into
another TPM

End of informative comment.

IDL Definition

TCPA_RESULT TPM_LoadMaintenanceArchive(
 [in, out] TCPA_AUTH* TpmOwnerAuth,
 …);

Type

TCPA protected capability; user must provide authentication from the TPM Owner.

Parameters

Type Name Description

TCPA_AUTH* TpmOwnerAuth Authorization for the new TPM to replace its Storage Root Key
with the one from the newPlatformDataBlob.

 Remaining parameters are manufacturer specific

Actions

The TPM SHALL perform the following when executing the command

• Validate the TPM Owner’s authorization

• Validate that the maintenance information was sent by the TPME. The validation mechanism MUST
use a strength of function that is at least the same strength of function as a digital signature
performed using a 2048 bit RSA key.

• The packet MUST contain m2 as defined in 7.3.1

• Ensure that only the target TPM can interpret the maintenance packet. The protection mechanism
MUST use a strength of function that is at least the same strength of function as a digital signature
performed using a 2048 bit RSA key.

• Process the maintenance information and update the SRK and
TCPA_PERSISTENT_FLAGS.tpmProof fields.

Descriptions

The maintenance mechanisms in the TPM MUST not require the TPM to hold a global secret. The
definition of global secret is a secret value shared by more than one TPM.

The TPME is not allowed to pre-store or use unique identifiers in the TPM for the purpose of
maintenance. The TPM MUST NOT use the endorsement key for identification or encryption in the
maintenance process. The maintenance process MAY use a TPM Identity to deliver maintenance
information to specific TPM’s.

The maintenance process can only change the SRK and tpmProof fields.

The maintenance process can only access data in shielded locations where this data is necessary to
validate the TPM Owner, validate the TPME and manipulate the blob

The TPM MUST be conformant to the TCPA specification, protection profiles and security targets after
maintenance. The maintenance MAY NOT decrease the security values from the original security target.

TCPA Main Specification Page 160

Version 1.0 25 January, 2001

The security target used to evaluate this TPM MUST include this command in the TOE.

Return Value Description

TCPA_SUCCESS Success.

TCPA_FAIL Failure.

TCPA_AUTHFAIL TPM Owner authorization failed.

TCPA_DISABLED The TPM is disabled

TCPA Main Specification Page 161

Version 1.0 25 January, 2001

7.3.3 TPM_KillMaintenanceFeature

Informative Comments:

The KillMaintencanceFeature is a permanent action that prevents ANYONE from creating a maintenance
archive. This action, once taken, is permanent until a new TPM Owner is set.

This action is to allow those customers who do not want the maintenance feature to not allow the use of
the maintenance feature.

At the discretion of the Owner, it should be possible to kill the maintenance feature in such a way that the
only way to recover maintainability of the platform would be to wipe out the root keys. This feature is
mandatory in any TPM that implements the maintenance feature.

End informative Comment

IDL Definition

TCPA_RESULT TPM_KillMaintenanceFeature(
 [in, out] TCPA_AUTH* TpmOwnerAuth);

Type

TCPA protected capability; user must provide authentication from the TPM Owner.

Parameters

Type Name Description

TCPA_AUTH* TpmOwnerAuth This command takes only one parameter: authorization by the
owner to shut off the maintenance feature.

Actions

• Validate the TPM Owner authorization

• Set the TCPA_PERSISTANT_FLAGS.AllowMaintenance flag to FALSE.

Return Value Description

TCPA_SUCCESS Success.

TCPA_FAIL Failure.

TCPA_AUTHFAIL TPM Owner authorization failed.

TCPA_DISABLED The TPM is disabled

TCPA Main Specification Page 162

Version 1.0 25 January, 2001

8. Cryptographic and Miscellaneous Functions

8.1 Introduction

This section describes the cryptographic functions and the miscellaneous functions that do not fit into any
specific category.

8.2 Hash Operations

Start of informative comment:

The TSS must provide the support necessary to do a SHA-1 digest.

End of informative comment.

TCPA Main Specification Page 163

Version 1.0 25 January, 2001

8.2.1 TSS_HashAll

The TSS_HashAll command is a TSS command that combines all three hash operations. The limitation of
this command is that the area to hash must be contiguous.

IDL Definition
TCPA_RESULT TSS_HashAll(

[in] UINT32 Algorithm,
[in] UINT32 AlgParamSize,
[in] UINT32 BufSize,
[in, size_is(AlgParamSize)] BYTE* AlgParms,
[in, size_is(BufSize)] BYTE* Buf,
[out] TCPA_DIGEST* Digest);

Type

TSS function

Parameters

Type Name Description

UINT32 Algorithm The algorithm to use

UINT32 AlgParamSize Size of the algorithm buffer

UINT32 BufSize The size of the buffer in bytes

BYTE* Buffer The buffer of information to the hash

BYTE* AlgParms The hash algorithm parameters

TCPA_DIGEST Hash The hash structure that keeps track of all state and operations

Actions

The TSS_HashAll command calls TSS_HashInit, TSS_HashUpdate, and TSS_HashFinal. This command
hashes a contiguous buffer in only one call.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_FAIL A critical internal error occurred.

TCPA Main Specification Page 164

Version 1.0 25 January, 2001

8.2.2 TSS_HashInit

The TSS_HashInit command starts the hash process.

IDL Definition

TCPA_RESULT TSS_HashInit(
 [in] UINT32 Algorithm,
 [in] UINT32 AlgParamSize,
 [in, size_is(AlgParamSize)] BYTE* AlgParms,
 [out] TSS_HASHHANDLE* HashHandle);

Type

TSS function

Parameters

Type Name Description

UINT32 Algorithm The algorithm to use

UINT32 AlgParamSize Size of the algorithm buffer

BYTE* AlgParms The hash algorithm parameters

TSS_HASHHANDLE HashHandle The handle that the TSS uses to locate the internal
information regarding this hash operation

Actions

The command validates the algorithm and parameters for the algorithm. There are no parameters for
SHA1.

The command generates the structures and states to keep track of the hash operations.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_SIZE There are too many open hash handles.

TCPA_FAIL A critical internal error occurred.

TCPA Main Specification Page 165

Version 1.0 25 January, 2001

8.2.3 TSS_HashUpdate

The TSS_HashUpdate command adds additional text to the hash.

IDL Definition

TCPA_RESULT TSS_HashUpdate(
[in] TSS_HASHHANDLE HashHandle,
[in] UINT32 BufSize,
[in, size_is(BufSize)] BYTE* Buf);

Type

TSS function

Parameters

Type Name Description

TSS_HASHHANDLE HashHandle Handle to the hash structure

UINT32 BufSize The size of the buffer in bytes.

BYTE* Buf The buffer of information to add to the hash.

Actions

The command locates the internal structures and state using the handle. The command adds the buffer of
information to the hash. The TPM keeps the intermediate state of the hash as part of the internal
structures.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_INVALID_HANDLE Invalid hash handle.

TCPA_FAIL A critical internal error occurred.

TCPA Main Specification Page 166

Version 1.0 25 January, 2001

8.2.4 TSS_HashFinal

The TSS_HashFinal command completes the hash process.

IDL Definition

TCPA_RESULT TSS_HashFinal(
[in] TSS_HASHHANDLE HashHandle,
[out] TCPA_DIGEST* Digest);

Type

TSS function

Parameters

Type Name Description

UINT32 HashHandle The size of the result in bytes.

TCPA_DIGEST Hash The result of the hash operation

Actions

The TSS_HashFinal command takes the intermediate state and performs the final steps of the hash
algorithm to obtain the output.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_INVALID_HANDLE Invalid hash handle.

TCPA_FAIL A critical internal error occurred.

TCPA Main Specification Page 167

Version 1.0 25 January, 2001

8.3 HMAC Commands

Start of informative comment:

The TSS must provide the functionality to perform a HMAC calculation.

End of informative comment.

The TSS MUST support the HMAC using the SHA-1 hashing operation and protocol as defined by RFC
2104.

Algorithms defined

#define TSS_ALG_HMAC 0x00000002

TCPA Main Specification Page 168

Version 1.0 25 January, 2001

8.3.1 TSS_HMACAll

The TSS_HMACAll command is a TSS command that combines all three HMAC operations. The
limitation of this command is that the area to hash must be contiguous.

IDL Definition

TCPA_RESULT TSS_HMACAll(
[in] UINT32 Algorithm,
[in] UINT32 SecretSize,
[in] UINT32 BufSize,
[in] UINT32 AlgParmSize,
[in, size_is(SecretSize)] BYTE* Secret,
[in, size_is(BufSize)] BYTE* Buf,
[in, size_is(AlgParmSize)] BYTE* AlgParms,
[out] TCPA_DIGEST* HMAC);

Type

TSS function

Parameters

Type Name Description

UINT32 Algorithm Algorithm to create the HMAC

UINT32 SecretSize Size of the secret area

UINT32 BufSize The size of the buffer to hash in bytes

UINT32 AlgParmSize The size of the algorithm parameters in bytes

BYTE* Secret Secret value used in HMAC calculation

BYTE* Buffer The buffer of information to add to the hash.

BYTE* AlgParms The parameters for the HMAC operation

TCPA_DIGEST HMAC The resulting HMAC operation.

Actions

The TSS_HMACAll command calls TSS_HMACInit, TSS_HMACUpdate, and TSS_HMACFinal
operations. This command is just for convenience.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_FAIL A critical internal error occurred.

TCPA Main Specification Page 169

Version 1.0 25 January, 2001

8.3.2 TSS_HMACInit

The TSS_HashInit command starts the HMAC process.

IDL Definition

TCPA_RESULT TSS_HMACInit(
 [in] UINT32 Algorithm,
 [in] UINT32 SecretSize,
 [in] UINT32 AlgParmSize,
 [in, size_is(SecretSize)] BYTE* Secret,
 [in, size_is(AlgParmSize)] BYTE* AlgParms,
 [out] TSS_HMACHANDLE* HmacHandle);

Type

TSS function

Parameters

Type Name Description

UINT32 Algorithm Algorithm to create the HMAC

UINT32 SecretSize Size of the secret area

UINT32 AlgParmSize The size of the algorithm parameters in bytes

BYTE* Secret Secret value used in HMAC calculation

BYTE* AlgParms The parameters for the HMAC operation

TSS_HMACHANDLE* HmacHandle The handle for the HMAC internal structures and states

Actions

The TPM validates the algorithm and the algorithm parameters. The TPM then validates the authorization
using the pubkey parameter and the authorization structure. The authorization type MUST be OSAP, as
the authorization must be continued for the remaining HMAC operations.

The TPM creates the structures and states necessary to process the remaining HMAC operations and
generates a handle to track the information.

The TPM has an internal limit as to the number of handles that may be open at one time, so the request
for a new handle may fail if there is insufficient space available.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_FAIL A critical internal error occurred.

TCPA Main Specification Page 170

Version 1.0 25 January, 2001

8.3.3 TSS_HMACUpdate

The TSS_HashUpdate command adds additional information to the HMAC calculation.

Definition

TCPA_RESULT TSS_HMACUpdate(
 [in] TSS_HMACHANDLE HmacHandle,
 [in] UINT32 BufSize,
 [in, size_is(BufSize)] BYTE* Buf);

Type

TSS function

Parameters

Type Name Description

TSS_HMACHANDLE HmacHandle The hash structure that keeps track of all state and
operations.

UINT32 BufSize The size of the buffer in bytes.

BYTE* Buffer The buffer of information to add to the hash.

Actions

The TSS locates the structures and states using the handle.

The TSS adds the information in the buffer to the hash and saves the intermediate hash state in the TSS.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_INVALID_HANDLE Invalid HMAC handle.

TCPA_FAIL A critical internal error occurred.

TCPA Main Specification Page 171

Version 1.0 25 January, 2001

8.3.4 TSS_HMACFinal

The TSS_HashFinal command completes the HMAC process.

Definition

TCPA_RESULT TSS_HMACFinal(
 [in] TSS_HMACHANDLE HmacHandle,
 [out] TCPA_DIGEST* HMAC);

Type

TSS function

Parameters

Type Name Description

TSS_HMACHANDLE HmacHandle The hash structure that keeps track of all state and
operations.

TCPA_DIGEST HMAC The resulting HMAC operation.

Actions

The TSS locates the structures and states using the handle.

The TSS then takes the intermediate state of the hash and performs the final steps of both the hash and
HMAC process. The resulting HMAC value is returned in the HMAC parameter.

The TSS destroys all structures and states relating to the HMAC including the secret value.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_INVALID_HANDLE Invalid HMAC handle.

TCPA_FAIL A critical internal error occurred.

TCPA Main Specification Page 172

Version 1.0 25 January, 2001

8.4 Key Certification

8.4.1 TPM_CertifyKey

Start of informative comment:

The TPM_CERTIFYKEY operation allows an identity key to certify the public portion of certain storage
and signing keys. TPM_CERTIFYKEY is allowed only for non-migratable keys. As such, it allows the TPM
to make the statement “this key is held in a TCPA-shielded location, and it will never be revealed.” For
this statement to have veracity, the Challenger must trust the policies used by the Privacy CA that issued
the identity and the maintenance policy of the TPM manufacturer.

The key to be certified must be loaded before TPM_CertifyKey is called.

TPM_CERTIFYKEY and QUOTE are the only operations that use TPM identity keys, apart from those
operations used to acquire identities.

End of informative comment.

IDL Definition

TCPA_RESULT TPM_CertifyKey(
 [in, out] TCPA_AUTH* IDauth,
 [in, out] TCPA_AUTH* CertifyKeyAuth,
 [AUTH, in] UINT32 BlobMaxSize,
 [AUTH, in] TCPA_KEY_SLOT KeyToCertify,
 [AUTH, in] TCPA_KEY_SLOT IdKey,
 [AUTH, in] TCPA_DIGEST ExternalData,
 [AUTH, in, out] UINT32* BlobSize,
 [AUTH, out, size_is(*BlobSize)] BYTE* Blob,
 [AUTH, out] TCPA_CERTIFY_INFO* SignHeader);
Type

TCPA protected capability; user must authorize the use of key pointed to by IdKey and the key pointed to
by KeyToCertify.

Parameters

Type Name Description

TCPA_AUTH IDAuth Authorization data for the IdKey parameter

TCPA_AUTH CertifyKeyAut
h

Authorization data for the CertifyKeyAuth parameter

UINT32 BlobMaxSize Maximum permissible size of the outgoing blob.

TCPA_KEY_SLOT KeyToCertify Key to be certified

TCPA_KEY_SLOT IdKey The key that will sign the new key. This MUST be a
TPM identity key

TCPA_DIGEST ExternalData 160-bits of externally supplied data (typically a nonce to
prevent replay attacks).

UINT32* BlobSize Size of the outgoing blob

BYTE* Blob Pointer to memory that is to receive the signed data
blob.

TCPA_CERTIFY_INFO SignHeader Information that defines how the signature was done

TCPA Main Specification Page 173

Version 1.0 25 January, 2001

Actions

The TPM validates that the key pointed to by idKey is an Identity Key.

The TPM verifies the authorization in IDAuth provides authorization to use the key pointed to by idKey.

The TPM verifies the authorization in CertifyKeyAuth provides authorization to use the key pointed to by
KeyToCertify.

The TPM SHALL verify that the key pointed to by KeyToCertify can successfully perform an encryption
and decryption of a nonce from the TPM RNG.

The TPM SHALL create a TCPA_CERTIFY_INFO (defined in section 4.19) structure from the key pointed
to by KeyToCertify.

The TPM calculates the digest of the KeyToCertify public key and stores it in the pubkeyDigest field of the
TCPA_CERTIFY_INFO structure.

The TPM assembles the externally provided data in the TCPA_CERTIFY_INFO structure’s Data
parameter.

If the IsWrappedToPCR field of the key being certified is TRUE,

The TPM MUST store the pcrDigest field of the key being certified in the DigestValue field of the
TPM_CERTIFY_INFO structure.

If the IsWrappedToPCR field of the key being certified is FALSE,

The TPM MUST set the IsWrappedToPCR field of the TPM_CERTIFY_INFO structure to FALSE, and the
TPM MUST set the pcrList.pcrCount field to 0, and the DigestValue field to 0.

The TPM then performs a TPM_Internal_Signature (See 8.16.2) on the signHeader parameter using the
key pointed to by idKey. The resulting signed blob is returned in signatureBlob.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_INVALID_HANDLE The key slot identifiers do not point to valid loaded keys

TCPA_BADPARAMETER One or more parameters were bad.

TCPA_BUFSIZE The output buffer is too small. *BlobSize is set to the size required.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

TCPA Main Specification Page 174

Version 1.0 25 January, 2001

8.5 Symmetric Encryption

Start of informative comment:

The symmetric-encryption entry point allows the TSS to perform symmetric encryption. This functionality
allows a TPM implementation of symmetric encryption to have a standard entry point.

The TSS uses symmetric encryption in the certification of identities. Making a symmetric algorithm
available in the TSS allows for creation of the certification messages entirely in the TSS.

Encryption is a three-step process: init, update and final. The init function performs the algorithm setup
once and then allows the repeated use of the setup with the update function.

Decryption is a mirror of the encryption process.

The encryption algorithm works on complete blocks only. There is no padding done by this
implementation.

End of informative comment.

TCPA Main Specification Page 175

Version 1.0 25 January, 2001

8.5.1 TSS_EncryptAll

The TSS_EncryptAll command calls Init, Update and Final. The reason for this command is to provide a
single call to the TSS for symmetric encryption.

IDL Definition

TCPA_RESULT TSS_EncryptAll(
 [in] UINT32 Algorithm,
 [in] UINT32 KeySize,
 [in] UINT32 RedSize,
 [in] UINT32 MaxBlackSize,
 [in] UINT32 AlgParmSize,
 [in, size_is(AlgParmSize)] BYTE* AlgParms,

[in, size_is(KeySize)] BYTE* Key,
 [in, size_is(RedSize)] BYTE* RedArea,
 [in, out] UINT32* BlackSize,
 [out, size_is(*BlackSize)] BYTE* BlackArea);
Type

TSS function

Parameters

Type Name Description

UINT32 Algorithm The encryption algorithm to use

UINT32 KeySize Size of the key.

UINT32 RedSize The size of the plaintext (red bits).

UINT32 MaxBlackSize The maximum size of the output (black bit) area.

UINT32 AlgParmSize Size of the algorithm parameters

BYTE* AlgParms Parameters for the algorithm

BYTE* Key The key for the encryption

BYTE* RedArea The plain text

UINT32* BlackSize The size of the output

BYTE* BlackArea The encrypted text

Actions

The command creates the TSS internal encryption handle and reserves any memory that the encryption
process will require. The TSS fills in the TCPA_ENCRYPT structure with the handle and the block size for
the algorithm.

The setup process includes any processing of the key into the various structures that the encryption
process will require.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_INVALID_HANDLE Unable to create handle

TCPA_FAIL A critical internal error occurred.

TCPA Main Specification Page 176

Version 1.0 25 January, 2001

8.5.2 TSS_EncryptInit

EncryptInit starts the encryption process.

IDL Definition

TCPA_RESULT TSS_EncryptInit(
 [in] UINT32 Algorithm,
 [in] UINT32 KeySize,
 [in] UINT32 AlgParmSize,
 [in, size_is(AlgParmSize)] BYTE* AlgParms,
 [in, size_is(KeySize)] BYTE* Key,
 [out] TCPA_ENCHANDLE* EncryptHandle);

Type

TSS function

Parameters

Type Name Description

UINT32 Algorithm The encryption algorithm to use

UINT32 KeySize Size of the key.

UINT32 AlgParmSize Size of the algorithm parameters

BYTE* AlgParms Parameters for the algorithm

BYTE* Key The key for the encryption

TCPA_ENCHANDLE EncryptHandle The handle for the internal states and structures

Actions

The TSS validates the algorithm and any algorithm parameters. The TSS then creates the internal
structures and states to manage the encryption process.

The TSS uses the key to perform any key setup tasks. The TSS may keep the key in internal memory or it
may destroy the key.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_INVALID_HANDLE Invalid hash handle.

TCPA_FAIL A critical internal error occurred.

TCPA Main Specification Page 177

Version 1.0 25 January, 2001

8.5.3 TSS_EncryptUpdate

The EncryptUpdate command encrypts the block of redbits.

IDL Definition

TCPA_RESULT TSS_EncryptUpdate(
[in] TCPA_ENCHANDLE EncryptHandle,

 [in] UINT32 RedSize,
 [in] UINT32 MaxBlackSize,
 [in, size_is(RedSize)] BYTE* RedArea,
 [in, out] UINT32* BlackSize,
 [out, size_is(*BlackSize)] BYTE* BlackArea);

Type

TSS function

Parameters

Type Name Description

TCPA_ENCHANDLE EncryptHandle The handle that points to the internal structures and
state

UINT32 RedSize The size of the input area (or red bits).

UINT32 MaxBlackSize Maximum size of the output area

BYTE* Redarea The input area (red bits).

UINT32* BlackSize The size of the output area (or black bits).

BYTE* Blackarea The output area (black bits).

Actions

The TSS validates the handle and locates the structures and states for the encryption process. The input
area must be the same size as the block for the encryption algorithm. The function encrypts the input and
returns the encrypted area.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_INVALID_HANDLE Invalid hash handle.

TCPA_FAIL A critical internal error occurred.

TCPA Main Specification Page 178

Version 1.0 25 January, 2001

8.5.4 TSS_EncryptFinal

The EncryptFinal command completes the encryption process.

IDL Definition

TCPA_RESULT TSS_EncryptFinal(
 [in] TCPA_ENCHANDLE EncryptHandle,
 [in] UINT32 MaxBlackSize,
 [in, out] UINT32* BlackSize,
 [out, size_is(*BlackSize)] BYTE* BlackArea);

Type

TSS function.

Parameters

Type Name Description

TCPA_ENCHANDLE EncryptHandle The handle that points to the internal structures and
state

UINT32 MaxBlackSize Maximum size of the output area

UINT32* BlackSize The size of the output area (or black bits).

BYTE* Blackarea The output area (black bits).

Actions

The command completes the encryption process and deletes the encryption handle. All memory
associated with the handle is deleted.

For most algorithms, there is no output for this command.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_INVALID_HANDLE Invalid handle.

TCPA_FAIL A critical internal error occurred.

TCPA Main Specification Page 179

Version 1.0 25 January, 2001

8.5.5 TSS_DecryptAll

The TSS_DecryptAll command calls Init, Update and Final. The reason for this command is to provide a
single call to the TPM if a provider is using the TPM for symmetric decryption.

IDL Definition

TCPA_RESULT TSS_DecryptAll(
 [in] UINT32 Algorithm,
 [in] UINT32 KeySize,
 [in] UINT32 BlackSize,
 [in] UINT32 MaxRedSize,
 [in] UINT32 AlgParmSize,
 [in, size_is(AlgParmSize)] BYTE* AlgParms,
 [in, size_is(KeySize)] BYTE* Key,
 [in, size_is(BlackSize)] BYTE* BlackArea,
 [in, out] UINT32* RedSize,
 [out, size_is(*RedSize)] BYTE* RedArea);
Type

TSS function

Parameters

Type Name Description

UINT32 Algorithm The decryption algorithm to use

UINT32 KeySize Size of the key.

UINT32 BlackSize The size of the encrypted text (black bits).

UINT32 MaxRedSize The maximum size of the output (red bit) area.

UINT32 AlgParmSize Size of the algorithm parameters

BYTE* AlgParms Parameters for the algorithm

BYTE* Key The key for the decryption

BYTE* BlackArea The plain text

UINT32* RedSize The size of the output

BYTE* RedArea The decrypted text

Actions

The command creates the TPM internal decryption handle and reserves any memory that the decryption
process will require. The TPM fills in the TCPA_ENCRYPT structure with the handle and the block size
for the algorithm.

The setup process includes any processing of the key into the various structures that the decryption
process will require.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_INVALID_HANDLE Unable to create handle

TCPA_FAIL A critical internal error occurred.

TCPA Main Specification Page 180

Version 1.0 25 January, 2001

8.5.6 TSS_DecryptInit

DecryptInit starts the decryption process.

IDL Definition

TCPA_RESULT TSS_DecryptInit(
 [in] UINT32 Algorithm,
 [in] UINT32 KeySize,
 [in] UINT32 AlgParmSize,
 [in, size_is(AlgParmSize)] BYTE* AlgParms,
 [in, size_is(KeySize)] BYTE* Key,
 [out] TCPA_ENCHANDLE* DecryptHandle);
Type

TSS function

Parameters

Type Name Description

UINT32 Algorithm The decryption algorithm to use

UINT32 KeySize Size of the key.

UINT32 AlgParmSize Size of the algorithm parameters

BYTE* AlgParms Parameters for the algorithm

BYTE* Key The key for the Decryption

TCPA_ENCHANDLE DecryptHandle The handle for the internal states and structures

Actions

The TSS validates the algorithm and any algorithm parameters. The TSS then creates the internal
structures and states to manage the decryption process.

The TSS uses the key to perform any key setup tasks. The TSS may keep the key in internal memory or it
may destroy the key.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_INVALID_HANDLE Invalid hash handle.

TCPA_FAIL A critical internal error occurred.

TCPA Main Specification Page 181

Version 1.0 25 January, 2001

8.5.7 TSS_DecryptUpdate

The DecryptUpdate command decrypts the block of black bits.

IDL Definition

TCPA_RESULT TSS_DecryptUpdate(
 [in] UINT32 DecryptHandle,
 [in] UINT32 BlackSize,
 [in, size_is(BlackSize)] BYTE* BlackArea,
 [in] UINT32 MaxRedSize,
 [in, out] UINT32* RedSize,
 [out, size_is(*RedSize)] BYTE* RedArea);

Type

TSS function.

Parameters

Type Name Description

TCPA_ENCHANDLE DecryptHandle The handle that points to the internal structures and
state

UINT32 BlackSize The size of the input area (or black bits).

UINT32 MaxRedSize Maximum size of the output area

BYTE* BlackArea The input area (black bits).

UINT32* RedSize The size of the output area (or red bits).

BYTE* RedArea The output area (red bits).

Actions

The TSS validates the handle and locates the structures and states for the decryption process. The input
area must be the same size as the block for the decryption algorithm. The function decrypts the input and
returns the decrypted area.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_INVALID_HANDLE Invalid hash handle.

TCPA_FAIL A critical internal error occurred.

TCPA Main Specification Page 182

Version 1.0 25 January, 2001

8.5.8 TSS_DecryptFinal

The DecryptFinal command completes the Decryption process.

IDL Definition

TCPA_RESULT TSS_DecryptFinal(
 [in] TCPA_ENCHANDLE DecryptHandle,
 [in] UINT32 MaxRedSize,
 [in, out] UINT32* RedSize,
 [out, size_is(*RedSize)] BYTE* RedArea);

Type

TSS function.

Parameters

Type Name Description

TCPA_ENCHANDLE DecryptHandle The handle that points to the internal structures and
state

UINT32 MaxRedSize Maximum size of the output area

UINT32* RedSize The size of the output area (or red bits).

BYTE* RedArea The output area (red bits).

Actions

The command completes the decryption process and deletes the decryption handle. All memory
associated with the handle is deleted.

For most algorithms, there is no output for this command.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_INVALID_HANDLE Invalid handle.

TCPA_FAIL A critical internal error occurred.

TCPA Main Specification Page 183

Version 1.0 25 January, 2001

8.6 Digital Signatures

8.6.1 TPM_Sign

Start of informative comment:

The Sign command signs a digest and returns the resulting digital signature. This command uses a
properly authorized signature key.

End of informative comment.

IDL Definition

TCPA_RESULT TPM_Sign(
 [in, out] TCPA_AUTH* PubAuth,
 [AUTH, in] TCPA_KEY_SLOT KeySlot,
 [AUTH, in] TCPA_DIGEST Digest,
 [AUTH, in] UINT32 MaxSignSize,
 [AUTH, in, out] UINT32* SignSize,
 [AUTH, out] TCPA_VERSION* ver,
 [AUTH, out, size_is(*SignSize)] BYTE* SignArea);
Type

TCPA protected capability; user must provide authorization to use the keySlot parameter.

Parameters

Type Name Description

TCPA_AUTH PubAuth The authorization structure that authorizes the use of keySlot.

TCPA_KEY_SLOT KeySlot The keySlot identifier of a loaded key that can perform digital
signatures.

TCPA_DIGEST Digest The digest value to sign

UINT32 MaxSignSize The maximum size of the output buffer

UINT32* SignSize The length of the signArea

TCPA_VERSION ver This SHALL be a properly filled out version structure. See 4.5

BYTE* SignArea The resulting digital signature.

Actions

The TPM validates the authorization to use the key pointed to by keySlot. The TPM validates that the key
pointed to by keySlot is allowed to perform digital signatures.

The TPM uses the Digest parameter as input to the PKCS#1 v2.0 RSAES_OAEP encoding scheme.

The TPM encrypts the encoded area using the private key pointed to by keySlot.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_INVALID_HANDLE Invalid handle.

TCPA_FAIL A critical internal error occurred.

TCPA Main Specification Page 184

Version 1.0 25 January, 2001

8.6.2 TSS_VerifySignature

VerifySignature takes a hash and verifies the digital signature of the hash. VerifySignature only returns a
TRUE or FALSE answer. The caller does not receive any information as to the reason for a failure.

IDL Definition

TCPA_RESULT TSS_VerifySignature(
 [in] UINT32 SigLen,
 [in] TCPA_DIGEST Digest,
 [in] TCPA_PUBKEY Pubkey,
 [in, size_is(SigLen)] BYTE* Signature);

Type

TSS capability

Parameters

Type Name Description

UINT32 SigLen The length of the signature area.

TCPA_DIGEST Digest Hash to verify

TCPA_PUBKEY Pubkey Identifier of key loaded in TPM

BYTE* Signature Signature blob to verify

Actions

The TPM loads the signature blob. The TPM decrypts the signature blob. The TPM then removes the
PKCS #1 padding and compares the digest parameter to the signed value. If they are the same the TPM
returns TCPA_SUCCESS otherwise the TPM returns TCPA_FAIL. The TPM MUST NOT give out any
additional information regarding the verification failure.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_FAIL A critical internal error occurred.

TCPA Main Specification Page 185

Version 1.0 25 January, 2001

8.7 Random Numbers

Start of informative comment:

The TPM has the ability to generate random numbers. This section merely exposes these numbers to
allow entities outside of the TPM to use a random number.

The size of the output random area is only limited by the size of the parameter.

Some random number generator implementations are strengthen by adding entropy to the RNG at
various intervals. The stir command allows those implementations to receive the entropy when it is
available.

End of informative comment.

TCPA Main Specification Page 186

Version 1.0 25 January, 2001

8.7.1 TPM_GetRandom

GetRandom returns the next n bytes from the random number generator to the caller.

IDL Definition

TCPA_RESULT TPM_GetRandom(
 [in] UINT32 BytesRequested,
 [out, size_is(BytesRequested)] BYTE* Blob);

Type

TCPA protected capability.

Parameters

Type Name Description

UINT32 BytesRequested The number of bytes to return. The maximum size is 256 bytes.

BYTE* Blob The output of the random bytes

Actions

This command fills in the random buffer with the next n bytes from the random number generator.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_FAIL A critical internal error occurred.

TCPA Main Specification Page 187

Version 1.0 25 January, 2001

8.7.2 TPM_StirRandom

StirRandom adds entropy to the RNG state.

IDL Definition

TCPA_RESULT TPM_StirRandom(
 [in] UINT32 BlobSize,
 [in, size_is(BlobSize)] BYTE* Blob);

Type

TCPA protected capability.

Parameters

Type Name Description

UINT32 BlobSize The size of the area

BYTE* Blob The area of data that will add entropy to the RNG state.

Actions

The TPM updates the state of the current RNG using the appropriate mixing function.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_FAIL A critical internal error occurred.

TCPA Main Specification Page 188

Version 1.0 25 January, 2001

8.8 Self Test

Start of informative comment:

The TPM has the ability to perform a self-test upon request. The test can be either a full test of the
complete TPM, the same tests as done at startup or a test of an individual function.

The tests only return an TCPA_SUCCESS or TCPA_FAIL answer and never reveal why a certain test
failed. Upon the failure of a self-test the TPM goes into failure mode and does not allow any additional
operations to continue. There is a subset of operations that are permissible in the failure mode see the
conformance document for details.

The TPM_CertifySelfTest operation allows a requestor to validate that the self-test command executed
and to trust the answer received.

The TPM_CertifySelfTest requires the authorization of a key that can perform a digital signature.

The TPM_CertifySelfTest is always the full self-test.

When the command fails for any reason, the command will not return a signature. The lack of a signature
field returning to a Challenger is indication that some part of the process failed. The failure could be
attacks against the signature or a failure in the TPM.

End of informative comment.

TCPA Main Specification Page 189

Version 1.0 25 January, 2001

8.8.1 TPM_SelfTestFull

Start of informative comment:

SelfTestFull tests all of the TCPA protected capabilities.

End of informative comment.

IDL Definition

TCPA_RESULT TPM_SelfTestFull(
[out] UINT32* manufacturerBigSecret);

Type

TCPA protected capability

Parameters

Type Name Description

UINT32* manufacturerBigSecret Manufacturer specific information

Actions

Performs the self-test for each functionality of the TPM.

Failure of only one function results in a failure for all and the TPM goes into failure mode.

Return Value Description

TCPA_SUCCESS The device passed all tests.

TCPA_FAIL The device failed one or more tests.

TCPA Main Specification Page 190

Version 1.0 25 January, 2001

8.8.2 TPM_SelfTestStartup

Start of informative comment:

SelfTestFull performs the same tests that are done at startup.

End of informative comment.

Definition

TCPA_RESULT TPM_SelfTestStartup(
[out] UINT32* manufacturerBigSecret);

Type

TCPA protected capability

Parameters

Type Name Description

UINT32* manufacturerBigSecret Manufacturer specific information

Actions

The TPM SHALL perform all required self-tests from section 10.8.1.

Failure of only one function results in a failure for all and the TPM goes into failure mode.

Return Value Description

TCPA_SUCCESS The device passed all tests.

TCPA_FAIL The device failed one or more tests.

TCPA Main Specification Page 191

Version 1.0 25 January, 2001

8.8.3 TPM_CertifySelfTest

IDL Definition

TCPA_RESULT TPM_CertifySelfTest(
 [in, out] TCPA_AUTH* PubAuth,
 [AUTH, in] TCPA_KEY_SLOT keySlot,
 [AUTH, in] UINT32 MaxBlobSize,
 [AUTH, in, out] UINT32* BlobSize,
 [AUTH, out] UINT32* manufacturerBigSecret,
 [AUTH, out, size_is(*BlobSize)] BYTE* Blob);

Type

TCPA protected capability; user must provide authorization to use the keySlot parameter.

Parameters

Type Name Description

TCPA_AUTH AuthData Authorization to use the key pointed to by pubKey

TCPA_KEY_SLOT keySlot Slot where key that will perform signature is loaded

UINT32 MaxBlobSize Maximum size of the blob.

UINT32* BlobSize Set to the size of the returned blob.

BYTE* Blob Pointer to memory that is to receive the signed data blob.

UINT32* manufacturerBig
Secret

Manufacturer specific information

Actions

The TPM SHALL perform TPM_SelfTestFull.

After successful completion of the self-test the TPM then validates the authorization to use the key
pointed to by keySlot.

The TPM creates a hash of the two nonce values associated with the authorization and signs the hash
using the key identified by keySlot.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_BAD_PARAMETER One or more parameters were bad.

TCPA_BUFSIZE The output buffer is too small. *SigBlobActualSize is set to the size
required.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

TCPA Main Specification Page 192

Version 1.0 25 January, 2001

8.9 Reset and Clear Operations

Start of informative comment:

Reset is the process of clearing all handles and sessions. The reset does not affect PCR values or
volatile flag values that are set on TPM initialization. The reset does not affect the SRK or ownership
values.

Clear is the process of returning the TPM to factory defaults. The clear commands need protection from
unauthorized use and must allow for the possibility of changing Owners. The clear process has
authorized commands and mechanisms to not allow the clear operation to occur.

The clear functionality performs the following tasks:

• Delete SRK. The deletion of the SRK includes the destruction of all protected storage areas below the
SRK in the hierarchy. The areas below are not destroyed they just have no mechanism to be loaded
anymore.

• All TPM volatile and non-volatile data is set to default value except the endorsement key pair. The
clear includes the Owner-authorization data, so after performing the clear, the TPM has no Owner.
The PCR values are undefined after a clear operation.

• The TPM shall returns TCPA_NOSRK until an Owner is set. After the execution of the clear
command, the TPM must go through a power cycle to properly set the PCR values.

The Owner has ultimate control of when a clear occurs.

The Owner can perform the TPM_OwnerClear command using the TPM Owner authorization. If the
Owner wishes to disable this clear command and require physical access to perform the clear, the Owner
can issue the TPM_DisableOwnerClear command.

During the TPM startup processing anyone with physical access to the machine can issue the
TPM_ForceClear command. This command performs the clear. The TPM_DisableForceClear disables
the TPM_ForceClear command for the duration of the power cycle. TSS startup code that does not issue
the TPM_DisableForceClear leaves the TPM vulnerable to a denial of service attack. The assumption is
that the TSS startup code will issue the TPM_DisableForceClear on each power cycle after the TSS
determines that it will not be necessary to issue the TPM_ForceClear command. The purpose of the
TPM_ForceClear command is to recover from the state where the Owner has lost or forgotten the TPM
Ownership token.

The TPM_ForceClear must only be possible when the issuer has physical access to the platform. The
manufacturer of a platform determines the exact definition of physical access.

End of informative comment.

The TPM MUST support the reset operation. The reset operation clears all handles, sessions and volatile
state machines. The reset MUST NOT affect the SRK, PCR and flags such as the flag set by
TPM_DisableForceClear.

The TPM MUST support the clear operations. The clear operation MUST perform the following actions:

• Perform a reset operation

• Delete the SRK

• Reset all non-volatile values to factory default except the endorsement key pair

• Return TCPA_NOSRK until there is a proper execution of the ownership function

The TPM MUST support disabling the clear operations. After execution of the TPM_DisableOwnerClear
the TPM MUST require physical access to execute the TPM_ForceClear. The TPM MUST support the
TPM_DisableForceClear to disable the TPM_ForceClear command. The TPM_DisableForceClear
command MUST execute on each startup cycle to be effective.

TCPA Main Specification Page 193

Version 1.0 25 January, 2001

8.9.1 TPM_Reset

Start of informative comment:

In the case that a TSS driver loses track of the internal state of the TPM this command allows the driver to
reset the TPM to a well-known state.

End of informative comment.

IDL Definition

TCPA_RESULT TPM_Reset();

Type

TCPA protected capability.

Parameters

None

Actions

The TPM deletes handles to all items in the TPM. This includes hash, HMAC and authorization sessions.

The TPM destroys all memory associated with any session. This includes secrets, nonces and state.

The TPM does not reset any PCR or DIR values.

The TPM does not reset any flags in the TCPA_VOLATILE_FLAGS structure.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed

TCPA Main Specification Page 194

Version 1.0 25 January, 2001

8.9.2 TPM_Init

Start of informative comment:

TPM_Init destroys most information on a TPM but will not unload keys that are both non-volatile and
independent of keys bound to a PCR. This permits keys to be loaded for use during the next boot
sequence.

End of informative comment.

Definition

TPM_Init

Type

TCPA protected capability that requires physical indication from the platform

Parameters

None

Actions

1. If a key in a key slot has the PCRParent indicator set to TRUE or the IsWrappedToPCR is TRUE
or IsVolatile set to TRUE, the key MUST be unloaded. All other keys MUST remain in their key
slots.

2. The TPM performs a TPM_Reset.

3. The TPM performs all normal startup operations. These operations include resetting PCR values
and all TCPA_VOLATILE_FLAGS.

The platform MUST be designed such that if the TPM_Init signal is asserted the entire Platform MUST be
initialized. This prevents, at least with a minimum effort, someone touching the TPM_Init pin on the TPM
and resetting only the TPM.

The TPM_Init signal MUST have signaling qualifications appropriate for the required conformance and
Protection Profile for the Platform.

TCPA Main Specification Page 195

Version 1.0 25 January, 2001

8.9.3 TPM_SaveState

Start of informative comment:

This warns a TPM to save some state information.

If a TPM’s shielded storage is non-volatile, this command need have no effect.

If a TPM’s shielded storage is volatile and the TPM alone is unable to detect the loss of external power in
time to move data to non-volatile memory, this command should be presented before the TPM enters a
low or no power state.

End of informative comment.

Definition

TCPA_RESULT TPM_SaveState();

Type

TCPA protected capability

Parameters

None

Actions

The contents of all PCRs MUST be preserved.

The contents of any key slot that is currently loaded SHOULD be preserved if the key's PCRParent
indicator is FALSE and its IsWrappedToPCR indicator is FALSE and its IsVolatile indicator is FALSE. The
contents of any key slot that is currently loaded MAY be preserved if its PCRParent indicator is TRUE or
its IsWrappedToPCR indicator is TRUE or its IsVolatile indicator is TRUE.

Values MUST be preserved in their original shielded locations or as copies in other shielded locations.

Preserved values MUST be non-volatile.

If the parameter mirrored by a preserved value is altered by a protected capability other than TPM_INIT,
the preserved value MUST be declared invalid. If the parameter mirrored by any preserved value is
altered by a protected capability other than TPM_INIT, all preserved values MAY be declared invalid.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_BUSY The TPM is too busy to do the command.

TCPA Main Specification Page 196

Version 1.0 25 January, 2001

8.9.4 TPM_Startup

Start of informative comment:

Upon receipt of a TPM_Init, the Platform may be in a power-on state or may be resuming from a
suspended state. Some trusted entity will determine the startup state and must inform the TPM of the
state.

End of informative comment.

Definition

TCPA_RESULT TPM_Startup(
[in] TCPA_STARTUP_TYPE stType);

Type

TCPA protected capability

Parameters

Type Name Description

TCPA_STARTUP_TYPE stType This SHALL indicate the type of startup that is occurring

Actions

TPM_Startup MUST be generated by a trusted entity (the RTM or the TPM, for example).

TPM_Startup MUST be presented to a TPM after a TPM_Init command and prior to presentation of any
other TPM command except TPM_GetCapability.

If a TPM command, other than one or more TPM_GetCapability commands, is executed after the
TPM_Init command and prior to the first TPM_Startup command, the TPM MUST invalidate all preserved
states, and enter an error state where only the TPM_GetCapability command functions until another
TPM_Init command is issued.

If stType = TCPA_ST_CLEAR

1. The TPM SHALL invalidate any preserved states and resume normal operation.

If stType = TCPA_ST_STATE

1. The TPM SHALL take all necessary actions to ensure that all PCRs contain valid preserved
values. If the TPM is unable to successfully complete these actions, it SHALL enter the TPM
failure mode.

2. The TPM SHALL take all necessary actions to ensure that a key slot contains the preserved
value of that key slot if the preserved value is valid and the preserved value's PCRParent
indicator is FALSE and its IsWrappedToPCR indicator is FALSE and its IsVolatile indicator is
FALSE. All other key slots MUST be unloaded. If the TPM is unable to successfully complete
these actions, it SHALL enter the TPM failure mode.

3. The TPM SHALL invalidate any preserved values. If the TPM is unable to successfully complete
this action, it SHALL enter the TPM failure mode

4. The TPM resumes normal operation. If the TPM is unable to resume normal operation, it SHALL
enter the TPM failure mode.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_FAIL The operation failed

TCPA Main Specification Page 197

Version 1.0 25 January, 2001

8.9.5 TPM_OwnerClear

Start of informative comment:

The OwnerClear command performs the clear operation under Owner authorization. This command is
available until the Owner executes the DisableOwnerClear, at which time any further invocation of this
command returns TCPA_CLEAR_DISABLED.

End of informative comment.

IDL Definition

TCPA_RESULT TPM_OwnerClear(
 [in, out] TCPA_AUTH* TpmOwnerAuth);

Type

TCPA protected capability; user must provide authorization as the TPM Owner.

Parameters

Type Name Description

TCPA_AUTH* TpmOwnerAuth Authorization data for the Owner

Actions

The TPM verifies that the TpmOwnerAuth properly authorizes the owner.

After owner verification the TPM then checks the status of the
TCPA_PERSISTENT_FLAGS.DisableOwnerClear flag, if set the TPM returns
TCPA_CLEAR_DISABLED.

The TPM executes the TPM_Reset command. The TPM then destroys the SRK and any internal data
associated with the SRK. The TPM then destroys the TPM Ownership data.

The result will be no Owner or SRK and the TPM is set to the state where it returns TCPA_NOSRK.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_NOSRK There is no Owner and no SRK value is available.

TCPA_CLEAR_DISABLED The DisableOwnerClear command has turned off the ability for the
OwnerClear command to execute.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

TCPA Main Specification Page 198

Version 1.0 25 January, 2001

8.9.6 TPM_DisableOwnerClear

Start of informative comment:

The DisableOwnerClear command disables the ability to execute the TPM_OwnerClear command
permanently. Once invoked the only method of clearing the TPM will require physical access to the TPM.

End of informative comment.

IDL Definition

TCPA_RESULT TPM_DisableOwnerClear(
 [in, out] TCPA_AUTH* TpmOwnerAuth);

Type

TCPA protected capability; user must provide authorization as the TPM Owner.

Parameters

Type Name Description

TCPA_AUTH TpmOwnerAuth Authorization data for the Owner

Actions

The TPM verifies that the TpmOwnerAuth properly authorizes the owner.

The TPM sets the TCPA_PERSISTENT_FLAGS.disableownerclear flag in the TPM that permanently
disables the execution of the TPM_OwnerClear command.

The only mechanism that can clear the TPM is the TPM_ForceClear command. The TPM_ForceClear
command requires physical access to the TPM to execute.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_NOSRK There is no Owner and no SRK value is available.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

TCPA Main Specification Page 199

Version 1.0 25 January, 2001

8.9.7 TPM_ForceClear

Start of informative comment:

The ForceClear command performs the Clear operation under physical access. This command is
available until the execution of the DisableForceClear, at which time any further invocation of this
command returns TCPA_CLEAR_DISABLED.

End of informative comment.

IDL Definition

TCPA_RESULT TPM_ForceClear();

Type

TCPA protected capability; there must be some evidence of physical access to the platform present for
the TPM to verify.

Parameters

None

Actions

The TPM checks for a prior execution of the TPM_DisableForceClear command. If executed, the TPM will
return TCPA_CLEAR_DISABLED.

After verification of physical access, the TPM performs a clear operation that has the same result as the
TPM_OwnerClear. The execution the result of this command is exactly like the TPM_OwnerClear.

The implementation of this command is a manufacturer option. The evidence of physical access could be
done by setting a pin high on a chip, or by sending special bus cycles or by any other mechanism that
provides evidence of physical access.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_NOSRK There is no Owner and no SRK value is available.

TCPA_CLEAR_DISABLED The DisableOwnerClear command has turned off the ability for the
OwnerClear command to execute.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

TCPA Main Specification Page 200

Version 1.0 25 January, 2001

8.9.8 TPM_DisableForceClear

Start of informative comment:

The DisableForceClear command disables the execution of the ForceClear command until the next
startup cycle. Once this command is executed, the TPM_ForceClear is disabled until another startup
cycle is run.

End of informative comment.

IDL Definition

TCPA_RESULT TPM_DisableForceClear();

Type

TCPA protected capability.

Parameters

None

Actions

The TPM sets the TCPA_VOLATILE_FLAGS.disableforceclear flag in the TPM that disables the
execution of the TPM_ForceClear command.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

TCPA Main Specification Page 201

Version 1.0 25 January, 2001

8.10 The GetCapability Commands

Start of informative comment:

The TPM has numerous capabilities that a remote entity may wish to know about. These items include
support of algorithms, key sizes, protocols and vendor-specific additions. The GetCapability command
allows the TPM to report back to the requestor what type of TPM it is dealing with.

There are two variations of the GetCapability command: one that provides a signed response and one
that merely returns the answer without an accompanying signature. The information in each is the same
except for the inclusion or absence of a digital signature.

The request for information requires the requestor to specify which piece of information that is required.
The request does not allow the “merging” of multiple requests and returns only a single piece of
information.

In failure mode the TPM can only return manufactures name, TPM model and TPM version.

End of informative comment.

The TPM MUST NOT return any information that identifies an individual TPM in the any GetCapability
command.

IDL Definitions

#define TPM_CAP_ORD 0x00000001
#define TPM_CAP_STAT 0x00000002
#define TPM_CAP_KEY 0x00000003
#define TPM_CAP_VENDOR 0x80000000

#define TPM_CAP_STAT_MAINT 0x00000301
#define TPM_CAP_CLEAR_OWNER 0x00000302
#define TPM_CAP_CLEAR_FORCE 0x00000303

TCPA Main Specification Page 202

Version 1.0 25 January, 2001

8.10.1 TPM_GetCapability

IDL Definition

TCPA_RESULT TPM_GetCapability(
 [in] UINT32 CapArea,
 [in] UINT32 SubCap,
 [in] UINT32 MaxRespSize,

[in, out] UINT32* RespSize,
 [out, size_is(*RespSize)] BYTE* Resp);

Type

TCPA protected capability

Parameters

Type Name Description

UINT32 CapArea Area to for request

UINT32 SubCap Further definition of what information is being requested

UINT32 MaxRespSize The maximum size of the response area

UINT32 RespSize The size of the capability response.

BYTE* Resp The actual response

Actions

The TPM validates the capArea and subCap indicators. If the information is available, the TPM creates
the response field and fills in the actual information.

capArea subCap Result

TPM_CAP_ORD Command ordinal Boolean value. TRUE TPM supports ordinal FALSE
no support

TPM_CAP_STAT TPM_ALG_XXX
TPM_PRT_XXX
TPM_ENC_XXX

Boolean value. TRUE TPM supports item, FALSE
no support

TPM_CAP_STAT TPM_CAP_STAT_MAINT Boolean value. TRUE maintenance flag ON, FALSE
maintenance flag OFF

TPM_CAP_STAT TPM_CAP_CLEAR_OWNER Boolean value. TRUE owner clear flag ON, FALSE
owner clear flag OFF

TPM_CAP_STAT TPM_CAP_CLEAR_FORCE Boolean value. TRUE force clear flag ON, FALSE
force clear flag

TPM_CAP_STAT TPM_CAP_STAT_PCR UINT32 value. Returns the count of PCR registers

TPM_CAP_STAT TPM_CAP_STAT_DIR UINT32 value. Returns the count of DIR registers.

TPM_CAP_STAT TPM_CAP_STAT_VENDOR UINT32 value. Identifier of the TPM manufacturer.

TPM_CAP_STAT TPM_CAP_STAT_VER TCPA_VERSION structure.

TPM_CAP_KEY key slot number TCPA_KEY_INFO. This structure contains
information regarding the key.

TCPA Main Specification Page 203

Version 1.0 25 January, 2001

information regarding the key.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_BAD_PARAMETER One or more parameters were bad.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

TCPA Main Specification Page 204

Version 1.0 25 January, 2001

8.10.2 TSS_GetCapability

IDL Definition

TCPA_RESULT TSS_GetCapability(
 [in] UINT32 CapArea,
 [in] UINT32 SubCap,
 [in] UINT32 MaxRespSize,

[in, out] UINT32* RespSize,
 [out, size_is(*RespSize)] BYTE* Resp);

Type

TSS function

Parameters

Type Name Description

UINT32 CapArea Partition of capabilities to be interrogated

UINT32 SubCap Further definition of what information is being requested

UINT32 MaxRespSize The maximum size of the response area

UINT32 RespSize The size of the capability response.

BYTE* Resp The actual response

Actions

The TPM validates the capArea and subCap indicators. If the information is available, the TPM creates
the response field and fills in the actual information.

capArea subCap Result

TSS_STAT TSS_RURDY BOOL – TRUE TPM will accept commands, FALSE
TPM is busy

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_BAD_PARAMETER One or more parameters were bad.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

TCPA Main Specification Page 205

Version 1.0 25 January, 2001

8.10.3 TPM_GetCapabilitySigned

Start of informative comment:

TPM_GetCapabilitySigned takes the same input as TPM_GetCapability the only difference is that the
response area has a digital signature to validate the answer.

End of informative comment.

IDL Definition

TCPA_RESULT TPM_GetCapabilitySigned(
 [in, out] TCPA_AUTH* SigningKeySlotAuth,
 [AUTH, in] TCPA_KEY_SLOT SigningKeySlot,
 [AUTH, in] UINT32 CapArea,
 [AUTH, in] UINT32 SubCap,
 [AUTH, in] UINT32 MaxRespSize,
 [AUTH, in] UINT32 MaxSignSize,
 [AUTH, in, out] UINT32* RespSize,
 [AUTH, in, out] UINT32* SignSize,
 [AUTH, out] TCPA_VERSION* ver,
 [AUTH, out, size_is(*RespSize)] BYTE* Resp,
 [AUTH, out, size_is(*SignSize)] BYTE* Sign);

Type

TCPA protected capability; the user must supply authorization to use of parameter SigningKeySlot.

Parameters

Type Name Description

TCPA_AUTH SigningKeySlotAuth Authorization to use SigningKeySlot

TCPA_KEY_SLOT SigningKeySlot Slot containing signature key.

UINT32 CapArea Partition of capabilities to be interrogated

UINT32 SubCap Further definition of what information is being
requested

UINT32 MaxRespSize The maximum size of the response area

UINT32 MaxSignSize The maximum size of the signature area

UINT32* RespSize The size of the capability response.

UINT32* SignSize The size of the signature area

TCPA_VERSION ver This SHALL be the current version, see 4.5

BYTE* Resp The response area as set by the capability response

BYTE* Sign The signature of the response

Actions

The TPM interprets the capArea and subCap fields to determine what the response should be. This is the
same processing as done in TPM_GetCapability.

TCPA Main Specification Page 206

Version 1.0 25 January, 2001

With the response field available, the TPM validates the authorization to use the key pointed to by
pubKey. After validation the TPM creates a digital signature of the response field and puts the resulting
signature block in the sign parameter.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_KEYNOTFOUND The PUBKEY of the key to be signed is not known to the TPM.

TCPA_BAD_PARAMETER One or more parameters were bad.

TCPA_BUFSIZE The output buffer is too small. *SigBlobActualSize is set to the size
required.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

TCPA Main Specification Page 207

Version 1.0 25 January, 2001

8.11 Audit Commands

Start of informative comment:

The TPM and TSS need to be able to report a log of events. The log uses the same paradigm as the
PCRs, the TPM keeps a PCR value that extends for each log event, and the TSS maintains the log
entries for Challengers to review.

The Owner has the ability to set which functions generate an audit event and to change which functions
generate the event at any time.

The status of the audit generation is not seen as sensitive information and so the command to determine
the status of the generation is not an authorized command.

End of informative comment.

Each command ordinal in non-volatile TPM memory has an indicator if executing the command will result
in the generation of an audit event.

The audit event includes the command ordinal and the return code from the command.

TCPA Main Specification Page 208

Version 1.0 25 January, 2001

8.11.1 TPM_GetAuditEvent

The TPM uses this command to get the audit information from the TPM.

IDL Definition

TCPA_RESULT TPM_GetAuditEvent(
 [out] UINT32* CmdOrd,
 [out] UINT32* Returncode,

[out] TCPA_DIGEST* Digest);

Type

TCPA protected capability.

Parameters

Type Name Description

UINT32* CmdOrd Ordinal of the last command executed.

UINT32* Returncode The return code for the last command executed

TCPA_DIGEST* Digest The running log of all audited events.

Actions

The TPM returns the ordinal of the last audited command. The TPM also returns the value of the running
digest.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

TCPA Main Specification Page 209

Version 1.0 25 January, 2001

8.11.2 TSS_GetAuditLog

Get the log from the TSS.

IDL Definition

TCPA_RESULT TSS_GetAuditLog(
 [in] UINT32 MaxLogSize,
 [in, out] UINT32* LogSize,
 [out] TCPA_VERSION* Version,
 [out] UINT32* EventCount,
 [out, size_is(*LogSize)] BYTE* Log);

Type

TSS function.

Parameters

Type Name Description

UINT32 MaxLogSize The maximum size of the output area

UINT32* LogSize The size of the log area

TCPA_VERSION* Version The version of the audit log.

UINT32* EventCount The count of events in the log

BYTE* Log The actual log entries. Each entry in the log is a
TCPA_LOG_EVENT structure.

Actions

The TSS returns all log events in the log file.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

TCPA Main Specification Page 210

Version 1.0 25 January, 2001

8.11.3 TPM_SetOrdinalAuditStatus

Set the audit flag for a given ordinal. This command requires the authorization of the TPM Owner.

IDL Definition

TCPA_RESULT TPM_SetOrdinalAuditStatus(
 [in, out] TCPA_AUTH* TpmOwnerAuth,
 [AUTH, in] UINT32 Ordinal,
 [AUTH, in] BOOL* State);

Type

TCPA protected capability; the user must show authorization from the TPM Owner to execute the
command.

Type Name Description

TCPA_AUTH TpmOwnerAuth TPM Owner authentication

UINT32 Ordinal The ordinal to set the audit event handling

BOOL State The state of the ordinal’s audit flag, where TRUE =
auditing, FALSE = not auditing.

Actions

The TPM authenticates the command using the TPM Owner authentication. If authentication
unsuccessful the TPM returns TCPA_FAIL.

The TPM sets the state of the non-volatile flag for the given ordinal to the indicated state. The TPM also
returns the state in the response.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

TCPA Main Specification Page 211

Version 1.0 25 January, 2001

8.11.4 TPM_GetOrdinalAuditStatus

Get the status of the audit flag for the given ordinal.

IDL Definition

TCPA_RESULT TPM_GetOrdinalAuditStatus(
 [in] UINT32 Ordinal,
 [out] BOOL* State);

Type

TCPA protected capability.

Parameters

Type Name Description

UINT32 Ordinal The ordinal to report the status on.

BOOL State The state of the ordinal’s audit flag, where TRUE =
auditing, FALSE = not auditing.

Actions

The TPM returns the Boolean value for the given ordinal.

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

TCPA Main Specification Page 212

Version 1.0 25 January, 2001

8.12 Enabling Ownership

Informative comment

The purpose of these capabilities is to enable and disable the process of taking ownership of a TPM.

The process of enabling and disabling ownership uses a non-volatile flag
TCPA_PERSISTENT_FLAGS.ownership. If the TCPA_PERSISTENT_FLAGS.ownership flag is TRUE,
the TPM will not permit the “take ownership” command to operate. If the flag is FALSE, it has no effect on
any other capability. See section 4.22.1 for the TCPA_PERSISTENT_FLAGS.ownership flag.

This enable-Ownership command on its own does not provide the necessary privacy controls for a TPM.
It should be considered together with the operation of the enable/disable commands of section 8.13 and
the activate/deactivate commands of section 8.14. The activate/deactivate commands are weaker forms
of the enable/disable commands, in that they permit the process of taking Ownership of a TPM. The
enable-Ownership, enable/disable, and activate/deactivate commands together permit the taking of TPM
Ownership without the risk of inadvertent use of a TPM. See section 2.6.

Physical presence authorizes the changing of the TCPA_PERSISTENT_FLAGS.ownership flag.

A remote entity must not be able to change the setting of the TCPA_PERSISTENT_FLAGS.ownership
flag.

End of informative comment.

TCPA Main Specification Page 213

Version 1.0 25 January, 2001

8.12.1 TPM_SetOwnerInstall

IDL Definition

TCPA_RESULT TPM_SetOwnerInstall (
 [in] BOOL* State);

Type

TCPA protected capability; there must be some evidence of physical access present for the TPM to verify.

Parameters

Type Name Description

BOOL State State to set ownership flag to

Action

If the TPM has a current owner, this command immediately returns with TCPA_SUCCESS.

The TPM validates the assertion of physical access. The TPM then sets the value of
TCPA_PERSISTENT_FLAGS.ownership to the value in state.

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_FAIL A critical system error occurred

TCPA Main Specification Page 214

Version 1.0 25 January, 2001

8.13 Enabling a TPM

Informative comment

The purpose of these capabilities is to enable and disable a TPM without destroying secrets protected by
the TPM.

The process of enabling and disabling a TPM uses the non-volatile TCPA_PERSISTENT_FLAGS.disable
flag. When set to TRUE, the TPM will reject most commands. Note, however, that a disabled TPM never
disables the “extend” capability. This is necessary in order to ensure that the PCR values in a TPM are
always up-to-date. If the flag is FALSE, it has no effect on other capabilities. See section 4.22.1 for the full
effects of the TCPA_PERSISTENT_FLAGS.disable flag.

These enable/disable commands on their own do not provide the necessary privacy controls for a TPM.
They should be considered together with the operation of the enable_ownership command of section 8.12
and the activate/deactivate commands of section 8.14. The activate/deactivate commands are weaker
forms of the enable/disable commands, in that they permit the process of taking Ownership of a TPM.
The enable-Ownership, enable/disable, and activate/deactivate commands together permit the taking of
TPM Ownership without the risk of inadvertent use of a TPM. See section 2.6.

There are two mechanisms to change the status of the TCPA_PERSISTENT_FLAGS.disable flag. The
first mechanism is by using the owner-authenticated command TPM_OwnerSetDisable. The second uses
the two commands TPM_PhysicalEnable and TPM_PhysicalDisable. These two commands require the
assertion of physical presence. TPM_PhysicalEnable must be incapable of subversion by software.

End of informative comment.

TCPA Main Specification Page 215

Version 1.0 25 January, 2001

8.13.1 TPM_OwnerSetDisable

IDL Definition

TCPA_RESULT TPM_OwnerSetDisable(
 [in, out] TCPA_AUTH* TpmOwnerAuth,
 [AUTH, in, out] BOOL* State);

Type

TCPA protected capability; the user must provide authorization.

Parameters

Type Name Description

TCPA_AUTH TpmOwnerAuth Authorization from TPM Owner

BOOL State State to set disable flag to

Action

The TPM SHALL authenticate the command as coming from the TPM Owner. If unsuccessful, the TPM
SHALL return TCPA_BAD_AUTH.

The TPM SHALL set the TCPA_PERSISTENT_FLAGS.disable flag to the value in the state parameter.

The TPM SHALL return the value of the flag in the response.

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_BAD_PARAMETER Parameter was not recognized

TCPA_FAIL A critical system error occurred

TCPA Main Specification Page 216

Version 1.0 25 January, 2001

8.13.2 TPM_PhysicalDisable

IDL Definition

TCPA_RESULT TPM_PhysicalDisable();

Type

TCPA protected capability; there must be some evidence of physical access present for the TPM to verify.

Parameters

None

Action

The TPM SHALL set the TCPA_PERSISTENT_FLAGS.disable value to TRUE. The TPM while executing
this command MUST obtain assurance from a physical method that operation of this command is
authorized.

The TPM manufacturer MAY implement this command not as a response to a message block but as a
response to a physical action, for instance, the acceptance of a special bus cycle or setting a pin high.

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_FAIL A critical system error occurred

TCPA Main Specification Page 217

Version 1.0 25 January, 2001

8.13.3 TPM_PhysicalEnable

Definition

TPM_PhysicalEnable

Type

TCPA protected capability; there must be some evidence of physical access present for the TPM to verify.

Parameters

None

Action

The TPM SHALL set the TCPA_PERSISTENT_FLAGS.disable value to FALSE. The TPM while
executing this command MUST obtain assurance from a physical method that operation of this command
is authorized.

The TPM manufacturer MUST implement this command as a response to a physical action, for instance,
the acceptance of a special bus cycle or setting a pin high.

The platform SHALL be incapable of subverting this command.

There is no IDL message block defined for this command.

TCPA Main Specification Page 218

Version 1.0 25 January, 2001

8.14 Activating a TPM

Informative comment

The purpose of these capabilities is to activate and deactivate a TPM without destroying secrets
protected by the TPM. This is subtly different from enabling and disabling a TPM.

An inactive TPM permits more commands to operate than does a disabled TPM. In particular, an inactive
TPM does not block the enabling/disabling of a TPM and the process of taking ownership of the TPM. An
inactive TPM never prevents the “extend” capability from operating. This is necessary in order to ensure
that the PCR values in a TPM are always up-to-date.

These activate/deactivate commands on their own do not provide the necessary privacy controls for a
TPM. They should be considered together with the operation of the enable_Ownership commands of
section 8.12 and the enable/disable commands of section 8.13. The enable/disable commands are
stronger forms of the activate/deactivate commands, in that they do not permit the process of taking
Ownership of a TPM. The enable-Ownership, enable/disable, and activate/deactivate commands together
permit the taking of TPM Ownership without the risk of inadvertent use of a TPM. See section 2.6.

There are TWO deactivated flags, one volatile and one non-volatile. At switch-on, the volatile flag is set to
the same state as the non-volatile flag. Altering the non-volatile flag requires physical presence at the
platform. The volatile flag can be set without authentication, but its effect lasts only until the platform is
rebooted.

See section 4.22.1 for the full effect of the TCPA_PERSISTENT_FLAGS.deactivated flag. See section
4.22.2 for the full effects of the TCPA_VOLATILE_FLAGS.deactivated flag.

End of informative comment.

TCPA Main Specification Page 219

Version 1.0 25 January, 2001

8.14.1 TPM_PhysicalSetDeactivated

IDL Definition

TCPA_RESULT TPM_PhysicalSetDeactivated(
 [in] BOOL* State);

Type

TCPA protected capability; there must be some evidence of physical access present for the TPM to verify.

Parameters

Type Name Description

BOOL State State to set deactivated flag to

Action

The TPM while executing this command MUST obtain assurance from a physical method that operation
of this command is authorized.

The TPM SHALL set the TCPA_PERSISTENT_FLAGS.deactivated flag to the value in the state
parameter.

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_BAD_PARAMETER Parameter was not recognized

TCPA_FAIL A critical system error occurred

TCPA Main Specification Page 220

Version 1.0 25 January, 2001

8.14.2 TPM_SetTempDeactivated

IDL Definition

TCPA_RESULT TPM_SetTempDeactivated();

Type

TCPA protected capability.

Parameters

None.

Action

The TPM SHALL set the TCPA_VOLATILE_FLAGS.deactivated flag to the value TRUE.

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_FAIL A critical system error occurred

TCPA Main Specification Page 221

Version 1.0 25 January, 2001

8.15 TPM_FieldUpgrade

Start of informative comment:

The TPM needs a mechanism to allow for updating the protected capabilities once a TPM is in the field.
Given the varied nature of TPM implementations there will be numerous methods of performing an
upgrade of the protected capabilities. This command, when implemented, provides a manufacturer
specific method of performing the upgrade.

The manufacturer can determine, within the listed requirements, how to implement this command. The
command may be more than one command and actually a series of commands.

The IDL definition is to create an ordinal for the command, however the remaining parameters are
manufacturer specific.

End of informative comment.

IDL Definition

TCPA_RESULT TPM_FieldUpgrade(
 [in, out] TCPA_AUTH* ownerAuth,
 …);
Type

TCPA protected capability; the TPM Owner must authenticate the command.

Parameters

Type Name Description

TCPA_AUTH ownerAuth Authentication from TPM owner to execute command

… Remaining parameters are manufacturer specific

Actions

The TPM SHALL perform the following when executing the command:

• Validate the TPM Owners authorization to execute the command

• Validate that the upgrade information was sent by the TPME. The validation mechanism MUST use a
strength of function that is at least the same strength of function as a digital signature performed
using a 2048 bit RSA key.

• Validate that the upgrade target is the appropriate TPM model and version.

• Process the upgrade information and update the protected capabilities

• Set the TCPA_PERSISTENT_FLAGS.revMajor and TCPA_PERSISTENT_FLAGS.revMinor to the
values indicated in the upgrade. The selection of the value is a manufacturer option. The values
MUST be monotonically increasing. Installing an upgrade with a major and minor revision that is less
than currently installed in the TPM is a valid operation.

• Set the TCPA_VOLATILE_FLAGS.deactivated to TRUE.

Descriptions

The upgrade mechanisms in the TPM MUST not require the TPM to hold a global secret. The definition of
global secret is a secret value shared by more than one TPM.

The TPME is not allowed to pre-store or use unique identifiers in the TPM for the purpose of field
upgrade. The TPM MUST NOT use the endorsement key for identification or encryption in the upgrade
process. The upgrade process MAY use a TPM Identity to deliver upgrade information to specific TPM’s.

The upgrade process can only change protected capabilities.

TCPA Main Specification Page 222

Version 1.0 25 January, 2001

The upgrade process can only access data in shielded locations where this data is necessary to validate
the TPM Owner, validate the TPME and manipulate the blob

The TPM MUST be conformant to the TCPA specification, protection profiles and security targets after the
upgrade. The upgrade MAY NOT decrease the security values from the original security target.

The security target used to evaluate this TPM MUST include this command in the TOE.

TCPA Main Specification Page 223

Version 1.0 25 January, 2001

8.16 TPM Internal RSA Operations on Arbitrarily Sized Data

Start of informative comment:

The TPM has need to encrypt data either to protect private keys or for other purposes. This function
provides a mechanism to perform this encryption in an interoperable way. Typically, this will be required
during protected storage operations.

There are two portions of the wrapping process, the first is to “chunk” the area up and the second is to
properly encrypt the chunks.

The chunking algorithm allows for different modulus sizes to create the same type of chunks so that the
decryption process can properly put the key back together.

The basic format of the key comes from PKCS#1 version 2.0.

End of informative comment.

TCPA Main Specification Page 224

Version 1.0 25 January, 2001

8.16.1 TPM_Internal_Encrypt

Start of informative comment:

This encryption function is for internal TPM use, only. This function takes a private key performs OAEP
encoding and additional processing of the encoded blob before performing the actual encryption of the
blob.

If an instantiation of security functions contains a TPM, this definition does not prevent the export of an
encryption function by that instantiation. That exported encryption function could have the same
parameters and data structures as TPM_Internal_Encrypt, but must have a different name. It would not
be a TCPA protected capability and would not have access to shielded-locations.

Such an encryption function may, or may not, affect the export and import of TCPA compliant equipment
to and from sovereign states.

End of informative comment.

The definition of this command is for internal use of TPM devices. The TPM MUST NOT export this
command outside the TPM.

IDL Definition

TCPA_RESULT TPM_Internal_Encrypt (
 [in] UINT32 maxPrivWrapSize,
 [in] TCPA_KEY_SLOT target
 [in] TCPA_KEY_SLOT wrapper,
 [in, out] UINT32* WrapSize,
 [out, size_is(*WrapSize)] BYTE* Wrap);

Type

Internal TCPA protected capability; TPM must not export this command.

Parameters

Type Name Description

UINT32 maxPrivWrapSize The maximum size of the output wrapped blob

TCPA_KEY_SLOT target This SHALL point to the private key to wrap

TCPA_KEY_SLOT wrapper This SHALL be the key that will perform the wrap

UINT32* WrapSize The size of the wrapped blob

BYTE* Wrap The wrapped blob

Action

The TPM SHALL use the RSAES_OAEP protocol from PKCS#1 version 2.0.

The TPM SHALL create a TCPA_STORE_ASYMKEY structure using the information for the key pointed
to by target.

After encoding the TCPA_STORE_ASYMKEY structure the TPM SHALL fill in the
TCPA_INTERNAL_HDR structure.

The TPM then creates the blob to be encrypted by appending the TCPA_INTERNAL_HDR structure with
the TCPA_STORE_ASYMKEY structure.

The TPM then encrypts the appended blob using the key pointed to by wrapper.

The TPM returns the wrapped key in the wrap parameter.

TCPA Main Specification Page 225

Version 1.0 25 January, 2001

Chunk Calculation

For various encryption algorithms, the size of the key may be longer than a single encryption operation
can handle. The following routine provides a standard method of breaking the area into suitable size
areas and allowing for the later decryption and re-assembly of the key.

The specification calls for OAEP so this chunk calculation works for the OAEP encryption and encoding
method.

• Set hLen to 20 bytes (the size of a SHA1 hash)

• Set int to the size of the header area TCPA_INTERNAL_HDR structure (1 byte)

• Set k to the modulus size of the RSA key

• For example for a 2048 bit key, k equals 256 bytes

• Formula is msize = k – int – 2*hLen

• msize = k –1 – 2*hLen = 256 – 1 – 40 = 215

• Create chunks to encrypt by taking msize chunks from the structure and performing the normal OAEP
encoding.

• The last chunk does not need to be padded as the process that will recreate the chunks knows the
size due to the dataSize parameter.

The output area is the wrapped chunks in order of their encryption. It is the responsibility of the receiver of
the wrapped area to ensure that the chunks remain in the correct order.

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_BAD_PARAMETER Parameter was not recognized

TCPA_FAIL A critical system error occurred

TCPA Main Specification Page 226

Version 1.0 25 January, 2001

8.16.2 TPM_Internal_Signature

Start of informative comment:

This signature function is for internal TPM use, only.

If an instantiation of security functions contains a TPM, this definition does not prevent the export of a
signature function by that instantiation. That exported signature function could have the same parameters
and data structures as TPM_Internal_Signature, but must have a different name. It would not be a TCPA
protected capability and would not have access to shielded-locations.

End of informative comment.

The definition of this command is for internal use of TPM devices. The TPM MUST NOT export this
command outside the TPM.

IDL Definition

TCPA_RESULT TPM_Internal_Signature (
 [in] UINT32 maxSigSize,
 [in] UINT32 blobSize,
 [in] TCPA_PRIVKEY sigKey,
 [in, size_is(blobSize)] BYTE* blob,
 [in, out] UINT32* sigSize,
 [out, size_is(*sigSize)] BYTE* sig);

Type

Internal TCPA protected capability; TPM MUST NOT export this command.

Parameters

Type Name Description

UINT32 maxSigSize The maximum size of the outputted wrapped private key

UINT32 blobSize This SHALL be the size of blob parameter

TCPA_PRIVKEY sigKey This SHALL be key that will perform the signature

BYTE* blob This SHALL be the data that is to be signed

UINT32* sigSize This SHALL be the size of the sig parameter on output

BYTE* sig This SHALL be the signature of the blob parameter

Action

The blob MUST be hashed using the SHA-1 algorithm and the resulting TCPA_DIGEST area is the value
to be signed.

The TPM SHALL sign the TCPA_DIGEST of the blob parameter with the key in sigKey using the
RSASSA-PKCS1-v1_5 protocol from PKCS#1 version 2.0.

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_BAD_PARAMETER Parameter was not recognized

TCPA_FAIL A critical system error occurred

TCPA Main Specification Page 227

Version 1.0 25 January, 2001

8.17 TPM_SetRedirection

Informative comment

‘Redirected” keys enable the output of a TPM to be directed to non-TCPA security functions in the
platform, without exposing that output to non-security functions.

It is sometimes desirable to direct the TPM’s output directly to specific platform functions without exposing
that output to other platform functions. To enable this, the key in a leaf node of TCPA Protected Storage
can be tagged as a “redirect” key. Any plaintext output data secured by a redirected key is passed by the
TPM directly to specific platform functions and is not interpreted by the TPM.

Since redirection can only affect leaf keys, redirection applies to: TPM_Unbind, TPM_Unseal,
TPM_Quote, TPM_Sign, TPM_CertifyKey

End of informative comments

IDL Definition

TCPA_RESULT TPM_SetRedirection (
 [in, out] TCPA_AUTH* keySlotAuth,
 [AUTH, in] TCPA_KEY_SLOT keySlot,
 [AUTH, in] UINT32 c1,
 [AUTH, in] UINT32 c2);

Type

TCPA protected capability; the TPM MAY implement this command. The user MUST supply authorization
to use the key pointed to by keySlot.

Parameters

Type Name Description

TCPA_AUTH* keySlotAuth This SHALL be the authorization to use the key pointed to by
keySlot

TCPA_KEY_SLOT keySlot This SHALL be slot identifier of a properly loaded key

UINT32 c1 This SHALL be a manufacturer option to specify the output
redirection

UINT32 c2 This SHALL be a manufacturer option to provide options for the
c1 parameter

Action

The TPM SHALL validate the authorization to use the key pointed to by keySlot.

The TPM SHALL verify that the key pointed to by keySlot has the redirection flag set to TRUE. If FALSE
the TPM SHALL return TCPA_FAIL.

The TPM SHALL set the key slot redirection parameters according to the values in parameters c1 and c2.

A key that is tagged as a “redirect” key MUST be a leaf key in the TCPA Protected Storage blob
hierarchy. A key that is tagged as a “redirect” key CAN NEVER be a parent key.

Ouput data that is the result of a cryptographic operation using the private portion of a “redirect” key:

1. MUST be passed to an alternate output channel

2. MUST NOT be passed to the normal output channel

3. MUST NOT be interpreted by the TPM.

TCPA Main Specification Page 228

Version 1.0 25 January, 2001

The authorization response returns to the caller.

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_BAD_PARAMETER Parameter was not recognized

TCPA_FAIL A critical system error occurred

TCPA Main Specification Page 229

Version 1.0 25 January, 2001

9. Subsystem Credentials

9.1 Introduction

Start of informative comment:

This section defines the credentials by which various entities vouch for a Trusted Platform, plus the
Subsystem capabilities that are used during the creation of those credentials.

End of informative comment.

All credentials MUST use the TCPA_VERSION structure.

9.2 Endorsement

Start of informative comment:

A TPM only has one asymmetric endorsement key pair. Due to the nature of this key pair, both the public
and private parts of the key have privacy and security concerns.

Exporting the PRIVEK from the TPM must not occur. This is for security reasons. The PRIVEK is a
decryption key and never performs any signature operations.

Exporting the public PUBEK from the TPM under controlled circumstances is allowable. Access to the
PUBEK must be restricted to entities that have a “need to know.” This is for privacy reasons.

The PUBEK is tagged with TCPA_version to indicate the version of the capability that created the key at
the time that the key was generated. This may be useful in the event that capabilities are field-upgraded.

Repeated access to the PUBEK of a TPM is desirable in the process of manufacturing TPMs and
platforms. Unfortunately, repeated access to the PUBEK is a security concern (because the PUBEK is
used to acquire ownership of the TPM) and may be a privacy concern.

The first call to TPM_CreateEndorsementKeyPair generates the endorsement key pair. After a successful
completion of TPM_CreateEndorsementKeyPair all subsequent calls return TCPA_FAIL.

The TPM_ReadPubek returns the PUBEK only while the readPubek flag is TRUE. The owner can set the
readPubek flag with an owner authorized command. In order to increase confidence that the PUBEK
returned is in response to the command a simple challenge/response is built into the call to
TPM_ReadPubek. The command returns a hash of a submitted nonce and the PUBEK.

End of informative comment.

The PRIVEK and PUBEK MUST be accessed only by protected capabilities whose definition explicitly
requires access to those keys.

TCPA Main Specification Page 230

Version 1.0 25 January, 2001

9.2.1 TPM_CreateEndorsementKeyPair

IDL Definition

 TCPA_RESULT TPM_CreateEndorsementKeyPair(
 [in] TCPA_NONCE Nonce,
 [in, size_is(keySize)] TCPA_KEY* keyInfo,
 [out] TCPA_DIGEST* Checksum,
 [out] TCPA_PUBKEY* PubEndorsementKey,
 [out] TCPA_VERSION* Ver);
Type

TCPA protected capability

Parameters

Type Name Description

UINT32 Nonce This is arbitrary data chosen by the entity that submits
the command

TCPA_KEY* keyInfo The input structure contains all parameters except
pubkey and privkey (which are NULL), to specify the
size and type of the new key.

TCPA_DIGEST Checksum This SHALL be the result of a hash process applied to
the concatenation of the PUBEK and the nonce.

TCPA_PUBKEY PubEndorsementKey This SHALL be the PUBEK

TCPA_VERSION Ver This SHALL be the version specified in section 4.5.

Description

For reasons of interoperability, algorithm SHOULD indicate RSA and algParms SHOULD indicate 2048bit
endorsement keys. (Refer to Conformance section 10.4 for further details.)

Type Name Description

TCPA_PRIVKEY PRIVEK This SHALL be the private key of the endorsement key pair.

TCPA_PUBKEY PUBEK This SHALL be the public key of the endorsement key pair.

The PRIVEK SHALL exist only in a TCPA-shielded location.

If the data structure TPM_ENDORSEMENT_CREDENTIAL is stored on a platform after an Owner has
taken ownership of that platform, it SHALL exist only in storage to which access is controlled and is
available to authorized entities.

Actions

The first valid TPM_CreateEndorsementKeyPair command received by a TPM SHALL

1. Create a key pair called the “endorsement key pair” using a TCPA-protected capability. The type and
size of key are that indicated by algorithm and the algParms.

2. Create “checksum” by appending the nonce to the PUBEK and passing the concatenated data
through a hash process.

3. Store the PRIVEK.

4. Export the data structures PUBEK, checksum and TCPA_version.

TCPA Main Specification Page 231

Version 1.0 25 January, 2001

Subsequent calls to TPM_CreateEndorsementKeyPair SHALL return code TCPA_FAIL.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_BAD_PARAMETER Parameter not recognized.

TCPA_FAIL A critical system error occurred.

TCPA Main Specification Page 232

Version 1.0 25 January, 2001

9.2.2 TPM_ReadPubek

IDL Definition

 TCPA_RESULT TPM_ReadPubek(
 [in] TCPA_NONCE Nonce,
 [out] TCPA_DIGEST* Checksum,
 [out] TCPA_PUBKEY* PubEndorsementKey,
 [out] TCPA_VERSION* Ver);
Type

TCPA protected capability

Parameters

Type Name Description

UINT32 Nonce This is arbitrary data chosen by the entity that submits
the command

TCPA_DIGEST Checksum This SHALL be the result of a hash process applied to
the concatenation of the PUBEK and the nonce.

TCPA_PUBKEY PubEndorsementKey This SHALL be the PUBEK

TCPA_VERSION Ver This SHALL be the version specified in section 4.5.

Description

This command returns the PUBEK.

Actions

The TPM_ReadPubek command SHALL

1. If readPubek is FALSE return TCPA_DISABLED_CMD.

2. Create “checksum” by appending the nonce to the PUBEK and passing the concatenated data
through a hash process.

3. Export the PUBEK, checksum and TCPA_version.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_BAD_PARAMETER Parameter not recognized. Output areas have a NULL pointer.

TCPA_FAIL A critical system error occurred.

TCPA_DISABLED_CMD A previous TPM_DisablePubekRead command has been successfully
processed setting TCPA_PERSISTENT_FLAGS.readPubek to FALSE.

TCPA Main Specification Page 233

Version 1.0 25 January, 2001

9.2.3 TPM_DisablePubekRead

Start of informative comment:

The TPM Owner may wish to prevent any entity from reading the PUBEK. This command sets the non-
volatile flag so that the read command always returns TCPA_DISABLED_CMD.

End of informative comment.

IDL Definition

 TPM_DisablePubekRead(
 [in, out] TCPA_AUTH* ownerAuth,

);
Type

TCPA protected capability; the user must present authorization from the TPM Owner.

Parameters

Type Name Description

TCPA_AUTH* ownerAuth This SHALL be the authorization from the TPM Owner to
execute this command

Actions

This capability sets the TCPA_PERSISTENTFLAGS.readPubek flag to FALSE.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_FAIL A critical system error occurred.

TCPA Main Specification Page 234

Version 1.0 25 January, 2001

9.2.4 TPM_OwnerReadPubek

IDL Definition

 TCPA_RESULT TPM_OwnerReadPubek(
 [in, out] TCPA_AUTH* ownerAuth,
 [AUTH, out] TCPA_PUBKEY* PubEndorsementKey,
 [AUTH, out] TCPA_VERSION* Ver);
Type

TCPA protected capability; caller must supply authorization from the TPM Owner

Parameters

Type Name Description

TCPA_AUTH* ownerAuth This SHALL be the authorization from the TPM Owner
to execute this command

TCPA_PUBKEY PubEndorsementKey This SHALL be the PUBEK

TCPA_VERSION Ver This SHALL be the version specified in section 4.5.

Description

This command returns the PUBEK.

Actions

The TPM_ReadPubek command SHALL

1. Validate the TPM Owner authorization to execute this command

2. Export the PUBEK and TCPA_version.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_BAD_PARAMETER Parameter not recognized.

TCPA_FAIL A critical system error occurred.

TCPA_AUTHFAIL The Owner authorization did not pass

TCPA Main Specification Page 235

Version 1.0 25 January, 2001

9.3 Generating a Trusted Platform Module Identity

Start of informative comment:

The purpose of TPM_MakeIdentity is to create

• an asymmetric key pair within the Trusted Platform Module and

• evidence that the key pair is bound to a label.

Only the Owner of the TPM has the privilege of creating a TPM identity. (An identity is not activated until
the reception of the command TPM_ActivateIdentity.)

TPM_MakeIdentity communicates new authorization data to the TPM using almost the same process as
Protected Storage uses to communicate new authorization data for blobs. Both processes require the
creation of a TPM_OSAP session and the use of the session’s shared secret to XOR the new
authorization data. The requirement for TPM_MakeIdentity is that the TPM_OSAP session must start with
the TPM Owner authorization.

The authorization data will provide the ability to associate authorization sessions with the new identity in
the future. The protection of the authorization data comes from the XOR having a one-time pad nature to
it. If an attacker can determine the shared secret of the TPM_OSAP session then the attacker can learn
the new value of the authorization data. For the case of identities, the owner is always the SRK, which in
many cases has well-known authorization data. This would allow an attacker to determine what the
shared secret was and hence what the value of the new authorization data is.

To avoid the problem with the SRK, the TPM_MakeIdentity command requires the TPM_OSAP session to
use the TPM Owner as the authorization to establish the session. This creates a shared secret that only
the TPM Owner and the TPM know and allows the proper protections when using the XOR for encryption.

A tpm_signature_key must be known only to the TPM.

Identity_binding uses the private (signature) key of a TPM identity. The private (signature) key of a TPM
identity is available only to selected commands. Its use enables a recipient to be certain that
identity_binding was generated inside a TPM. This feature prevents a rogue Owner from assembling
identity_binding data structures outside the TPM and hence obtaining attestation to the same TPM
identity from multiple Privacy CAs.

Identity_binding is tagged with TCPA_version so as to indicate the version of the capability that created
the identity_binding at the time that identity_binding was generated. This may be useful in the event that
capabilities are field-upgraded.

The algorithm parameter indicates the type of encryption algorithm in use for the TPM identity. It may
indicate RSA, or ECC, to give two examples. The algParms references the parameters that are necessary
for the particular encryption algorithm in use. For RSA, these parameters are just the length of the RSA
key.

The PKI identity protocol enables a Trusted Platform Module to have multiple identities. Each identity may
have attestation from exactly one Privacy CA.

TCPA Main Specification Page 236

Version 1.0 25 January, 2001

The TPM creates an identity-binding signature (the value of a signature over the
TCPA_IDENTITY_CONTENTS structure). Among other things, this proves possession of the new private
key, which does the signing of the TCPA_IDENTITY_CONTENTS structure. The Subsystem sends the
signature along with evidence of a genuine TPM and the platform the TPM resides on to a Privacy CA.
The encryption of the request is to provide privacy not security.

The Privacy CA inspects the evidence and concurs that the TPM is genuine and in a valid platform. The
Privacy CA validates the signature of the TCPA_IDENTITY_CONTENTS structure and verifies that it was
signed using the private key corresponding to the public key in the identity request. The
TCPA_IDENTITY_CONTENTS structure includes the Privacy CA’s public key. The Privacy CA obtains
assurance that it (and not some other Privacy CA) is the target of the request to provide the identity
attestation.

The Privacy CA cannot check that the public key inside identity-binding signature belongs to a genuine
TPM, but it knows that the TPM described in the evidence is a genuine TPM. The Privacy CA generates
the attestation credential and encrypts the credential for decryption by the requesting TPM. The Privacy
CA also sends the genuine TPM a “statement” that the credential attests to a particular public key (the
one in the identity-credential).

The TPM receives the encrypted data. It cannot parse the credential, but it can check that the credential
attests to one of its public keys, by checking the “statement” from the Privacy CA. Only if the credential
relates to one of the TPM’s public keys does the TPM enable recovery of the credential.

The presumption is that the Privacy CA is trustworthy. This must be the case for the acceptance of the
attestation by a third party. Hence, if the attestation is worth having, the “statement” from the Privacy CA
to the TPM can be trusted. Hence, the TPM “knows” that the encrypted credential relates to the public key
in the “statement.” The Privacy CA has ensured that only a genuine TPM can recover the encrypted
credential and statement and that a genuine TPM will enable recovery of the credential only if the
credential is associated with a public key belonging to the TPM.

A rogue can certainly pose as a Privacy CA and cause the TPM to release the credential created by that
rogue. But who will trust the attestation provided by that rogue? A trustworthy credential can be recovered
only if it attests to a public key of a genuine TPM, because the Privacy CA that created the credential can

Obtaining a TPM identity

session_key_2

identity binding

Privacy
CA

TPM SS OwnerPrivacy
CA

TPM SS Owner
TPM_identity_credentials

E(P_CA_identity, session-key_1)
E(session_key_1, TPM-identity-key,
id-label, alg-id, alg-param, identity_binding,
endorsement-cred, platform-cred,
conformance-cred)

contact_privacy_CA

1

2

3

4

5

1

2

3

4

5

make_TPM identity(P_CA_identity,

id-label, identity_authorisation, alg_id, alg_param)

collate_identity_request(….)

activate_TPM_identity (
E(endorsement_key,digest(id-key), session_key_2))

recover_TPM_identity(session_key_2,
E(session_key_2, TPM_identity_credentials))

TCPA Main Specification Page 237

Version 1.0 25 January, 2001

be trusted to check that a TPM is genuine and to correctly state that a credential describes a particular
public key, and a genuine TPM checks that the public key belongs to that TPM before releasing the
credential.

The reason for including the public key of the Privacy CA inside identity-binding signature is to prevent a
rogue obtaining attestation from multiple Privacy CAs. The identity-binding signature creation is an atomic
operation performed at the same time as the key pair creation, and therefore the TPM cannot be coerced
into creating a version of the identity-binding signature with the same keys but a different Privacy CA
public key.

The Identity-binding signature is one of the few operations that are permitted to use the private
(signature) key of a TPM identity. A version of identity_binding with a different Privacy CA public key can't
be reproduced by commands from outside the TPM, because the TPM will refuse to sign arbitrary data
with a private (signature) key of a TPM identity.

The process deliberately has certain characteristics:

For example, during TPM_MakeIdentity,

• The atomic generation of the key pair and encrypted identity_binding information prevents the
creation by a TPM of duplicate identity_binding information while avoiding the need for a TPM to
retain state.

• Signing with the private (signature) key of a TPM identity prevents the creation of duplicate
“identity_binding” information outside a TPM.

• When a Privacy CA receives data, it can use the data describing the new TPM identity to check that
the request for attestation (if it came from a genuine TPM) is a unique request, use the endorsement
credentials to check that a stated TPM is a genuine TPM, and use the platform credentials and
conformance credentials to check that a stated platform is a genuine Trusted Platform. The Privacy
CA cannot, however, verify that the new TPM identity was actually generated by that genuine TPM.
On the assumption, however, that the new TPM identity was actually generated by a genuine TPM,
the Privacy CA generates TPM_IDENTITY_CREDENTIALs and a statement that expresses a binding
between that TPM_IDENTITY_CREDENTIAL and the new TPM identity. The Privacy CA then
encrypts this information so that it can be recovered only by the genuine TPM described by the
endorsement credentials.

• During TPM_ActivateIdentity, the genuine TPM checks that the encrypted
TPM_IDENTITY_CREDENTIAL is bound to one of the TPM’s identities and enables decryption of
TPM_IDENTITY_CREDENTIAL only if that association exists. This last stage is critical but subtle,
since the TPM has insufficient computing power to parse TPM_IDENTITY_CREDENTIAL and relies
on the “statement” from the Privacy CA that a TPM_IDENTITY_CREDENTIAL is associated with a
given identity.

• The entire process depends critically on the trustworthiness of the Privacy CA. If the Privacy CA is
trustworthy, a plaintext TPM_IDENTITY_CREDENTIAL recovered by a TPM describes an identity of
a genuine TPM. Otherwise, a TPM_IDENTITY_CREDENTIAL cannot be trusted. The Privacy CA
must be trusted to make TPM_IDENTITY_CREDENTIAL only if the request for attestation is a unique
request and the stated TPM and platform are genuine. The Privacy CA must be trusted never to
reveal a plaintext copy of TPM_IDENTITY_CREDENTIAL and to be truthful when stating that a
particular TPM_IDENTITY_CREDENTIAL is associated with a particular identity.

End of informative comment.

TCPA Main Specification Page 238

Version 1.0 25 January, 2001

9.3.1 TPM_MakeIdentity

IDL Definition

 TCPA_RESULT TPM_MakeIdentity(
 [in, out] TCPA_AUTH* TpmOwnerAuth,
 [in, out] TCPA_AUTH* SrkAuth,
 [AUTH, in] TCPA_PUBKEY PrivacyCA,
 [AUTH, in] UINT32 LabelSize,
 [AUTH, in] UINT32 MaxWrapSize,
 [AUTH, in] UINT32 MaxCAsize,
 [AUTH, in] UINT32 IdentityAuthSize,
 [AUTH, in, size_is(LabelSize)] BYTE* Label,
 [AUTH, in] TCPA_KEY keyInfo,
 [AUTH, in, size_is(IdentityAuthSize)] BYTE* IdentityAuth,
 [AUTH, in, out] UINT32* WrapSize,
 [AUTH, in, out] UINT32* CaSize,
 [AUTH, out] TCPA_PUBKEY* IdentityPub,
 [AUTH, out, size_is(*WrapSize)] BYTE* Wrap,
 [AUTH, out, size_is(*CaSize)] BYTE* identityBinding);)
Type

TCPA protected capability; user must provide authorizations from the TPM Owner and the SRK.

Parameters

Type Name Description

TCPA_AUTH TpmOwnerAuth This SHALL be authorization from the TPM Owner. The
authorization session MUST be OSAP.

TCPA_AUTH SrkAuth This SHALL be authorization for use of the SRK

TCPA_PUBKEY PrivacyCA This SHALL be the Public key of the Privacy CA that will
vouch for this TPM identity.

UINT32 LabelSize The size of the label field

UINT32 MaxWrapSize The maximum size of the wrap area

UINT32 MaxCASize The maximum size of the CA area

UINT32 IdentityAuthSize The size of the area for the new identities authorization

BYTE* Label The label for the new identity

TCPA_KEY keyInfo The input structure contains all parameters except pubkey
and privkey (which are NULL), to specify the size and type
of the new key.

BYTE* IdentityAuth This SHALL be an encrypted version of the authorization
data (identity_authorization) that is to be presented when
accessing the private key of this new TPM identity.

UINT32* WrapSize The size of the outputted wrapped identity.

UINT32* CaSize The size of the area to be sent to the CA

TCPA_PUBKEY* IdentityPub This SHALL be the public key of this TPM identity.

BYTE* Wrap This SHALL be a protected-storage structure, used to store
the private key of this TPM identity.

TCPA Main Specification Page 239

Version 1.0 25 January, 2001

BYTE* identityBinding This SHALL be the signature value of the signature over the
structure TCPA_IDENTITY_CONTENTS, using the
tpm_signature_key in the algorithm indicated by
asym_alg_id and asym_alg_parameters.

Description

The command TPM_MakeIdentity is used to generate an identity in a TPM and to request attestation to
that identity.

The public key of the new TPM identity SHALL be identityPubKey. The private key of the new TPM
identity SHALL be tpm_signature_key.

For reasons of interoperability, algorithm SHOULD indicate RSA and algParms SHOULD indicate a
2048bit TPM identity key. (Refer to Conformance section 10.4.1 for further details.)

Properties of the new identity

Type Name Description

TCPA_PUBKEY IdentityPubKey This SHALL be the public key of a previously unused
asymmetric key pair.

TCPA_PRIVKEY Tpm_signature_key This SHALL be the private key that forms a pair with
identityPubKey and SHALL be extant only in a TCPA-
shielded location.

This capability also generates a blob containing the tpm_signature_key, which has the same format as a
blob created by a CreateWrapKey command. The structure of that blob is defined in TCPA_PRIVKEY.

If identityPubKey is stored on a platform after an Owner has taken ownership of that platform, it SHALL
exist only in storage to which access is controlled and is available to authorized entities.

If the Subsystem supports the creation of an audit log, the receipt-event and response-event associated
with a TPM_MakeIdentity command SHALL form part of that log.

Actions

A Trusted Platform Module that receives a valid TPM_MakeIdentity command SHALL do the following:

1. Use TpmOwnerAuth to verify that the Owner authorized all TPM_MakeIdentity parameters tagged
with “AUTH IN”, and abandon this TPM_MakeIdentity process if there is no match. The TPM MUST
use a protected capability to verify the authorization data.

2. Use SRK_auth to verify that the SRK owner authorised all TPM_MakeIdentity parameters tagged with
“AUTH IN”, and abandon this TPM_MakeIdentity process if there is no match. The TPM MUST use a
protected capability to verify the authorization data.

3. Obtain the identity_authorization to be associated with the new TPM identity, by decrypting the field
IdentityAuth using the shared secret created with the TPM_OSAP session. The establishment of the
TPM_OSAP session MUST use the authentication of the TPM Owner. The decryption uses an XOR
of the identityAuth field and the shared secret of the TPM_OSAP session.

4. Create an asymmetric key pair (identityPubKey and tpm_signature_key) using a TCPA-protected
capability, in accordance with the algorithm and algParms contained in the TPM_MakeIdentity
command

5. Associate the tpm_signature_key with the identity_authorization, such that tpm_signature_key can
only be used upon presentation of identity_authorization.

TCPA Main Specification Page 240

Version 1.0 25 January, 2001

6. Export a data structure with the same format as that created by the command ”CreateWrapKey,”
using identity_authorization as authorization data, using the Storage Root Key as the parent key, and
marking tpm_signature_key as belonging to a TPM identity.

7. Export the data structure identityPubKey using an authorization method that identifies identityPubKey
as a response to this instance of a TPM_MakeIdentity command. The authorization method SHALL
be a TCPA-protected capability whose purpose is to provide such authorization data.

8. Export the data structure identity_binding.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_BAD_PARAMETER Parameter was not recognized.

TCPA_FAIL A critical system error occurred.

TCPA Main Specification Page 241

Version 1.0 25 January, 2001

9.3.2 TSS_CollateIdentityRequest

Start of informative comment:

The purpose of the TSS_CollateIdentityRequest command is to assemble all the data that will be
required by a Privacy CA in order to assess a platform and attest to the identity of a Subsystem.

The TSS_CollateIdentityRequest command is separate from the TPM_MakeIdentity command because
their processing might be done on different engines. The reason is that TSS_CollateIdentityRequest does
not have to be trustworthy but TPM_MakeIdentity must be trustworthy. Therefore, an implementation of
TSS_CollateIdentityRequest does not require the same protection as an implementation of
TPM_MakeIdentity.

A session key (the random number) is used to provide confidentiality of the “TCPA_IDENTITY_REQ.”
This is to ensure that only the Privacy CA chosen by the Owner can interpret the data, while minimizing
exposure of that Privacy CA’s identity (public) key.

The data asym_alg_id indicates the type of encryption algorithm that is used by the TPM identity. To give
two examples, it may indicate RSA, or ECC. The data asym_alg_parameters references parameters that
are necessary for the particular encryption algorithm in use. For RSA, these parameters are just the
length of the RSA key.

Once the data structure TCPA_IDENTITY_REQ has been produced, it should be sent to the Privacy CA
chosen by the Owner.

End of informative comment.

IDL Definition

TCPA_RESULT TSS_CollateIdentityRequest(
 [in] TCPA_VERSION Ver,
 [in] UINT32 Algorithm,
 [in] UINT32 LabelSize,
 [in] UINT32 ParmSize,
 [in] UINT32 EndorseSize,
 [in] UINT32 PlatformSize,
 [in] UINT32 ConformSize,
 [in] UINT32 MaxReqSize,
 [in] UINT32 IdentityBindingSize,
 [in] TCPA_PUBKEY CaPubKey,
 [in] TCPA_PUBKEY IdentityKey,
 [in, out] UINT32* ReqSize,
 [in, size_is(LabelSize)] BYTE* LabelArea,
 [in, size_is(ParmSize)] BYTE* AlgParms,
 [in, size_is(EndorseSize)] BYTE* EndorseCredential,
 [in, size_is(PlatformSize)] BYTE* PlatformCredential,
 [in, size_is(ConformSize)] BYTE* ConformCredential,
 [in, size_is(IdentityBindingSize)] BYTE* IdentityBinding,
 [out, size_is(*ReqSize)] BYTE* IdentityReq);}

Type

TSS capability and MAY be TPM capability.

Parameters

Type Name Description

TCPA_VERSION Ver This SHALL be the version specified in section
4.5.

UINT32 Algorithm This SHALL be the type of symmetric encryption
algorithm to be used for a session key

TCPA Main Specification Page 242

Version 1.0 25 January, 2001

algorithm to be used for a session key

UINT32 LabelSize This SHALL be the size of the identity label

UINT32 ParmSize This SHALL be the size of the symmetric
parameters

UINT32 EndorseSize This SHALL be the size of the endorsement
credential

UINT32 PlatformSize This SHALL be the size of the platform
credential

UINT32 ConformSize This SHALL be the size of the conformance
credential

UINT32 MaxReqSize This SHALL be the maximum size of the output
request area.

UINT32 IdentityBindingSize This SHALL be the identity structure from the
TPM_MakeIdentity function.

TCPA_PUBKEY CaPubKey This SHALL be the identity (public) key of the
entity (Privacy CA) chosen by the Owner to
attest to the identity of the Subsystem.

TCPA_PUBKEY IdentityKey This SHALL be the public key of the TPM
identity for which attestation is requested.

UINT32* ReqSize This SHALL be the size of the identityReq field

BYTE* LabelArea This SHALL be the identity label

BYTE* AlgParms This SHALL be a structure particular to type of
symmetric encryption algorithm to be used for a
session key

BYTE* EndorseCredential This SHALL be a TCPA-defined data structure
which contains the data of
TPM_ENDORSEMENT_CREDENTIAL and
attests that a specific TPM conforms to the
TCPA specification.

BYTE* PlatformCredential This SHALL be a TCPA-defined data structure
which contains the data of platform_credential
and attests that a specific platform conforms to
the TCPA specification.

BYTE* ConformanceCredential This SHALL be a TCPA-defined data structure
which contains the data of conformance-
credential and attests that the design of a
specific platform conforms to the TCPA
specification.

BYTE* IdentityBinding This SHALL be the data structure exported by
the command TPM_MakeIdentity.

BYTE* IdentityRequest This SHALL be the data structure defined in this
section.

Description

TCPA Main Specification Page 243

Version 1.0 25 January, 2001

The command TSS_CollateIdentityRequest assembles all data necessary to request attestation of a
Trusted Platform Module identity.

A Trusted Platform Subsystem that receives a valid TSS_CollateIdentityRequest command SHALL export
the data structure “TCPA_IDENTITY_REQ.”

The TSS in executing this function performs two encryptions. The first is to symmetrically encrypt the
information and the second is to encrypt the symmetric encryption key with an asymmetric algorithm. The
symmetric key is a random nonce and the asymmetric key is the public key of the CA that will provide the
identity credential.

Actions

The command SHALL perform the following actions:

1. Validate that the TSS can support the symmetric algorithm and the asymmetric algorithm necessary
to perform the encryptions. If the TSS does not support these algorithms it MUST return
TCPA_BAD_PARAMETER.

2. Initialize the identityRequest area to be the TCPA_IDENTITY_REQ structure.

3. Create a session key by calling TSS_GetRandom.

4. Create an IV for the symmetric encryption. The IV is stored in the algParms field of the
TCPA_IDENTITY_REQ structure.

5. Create the TCPA_SYM_IDENTITY_REQ structure. The command SHALL fill in each field of the
structure according to the field requirements.

6. Encrypt the TCPA_SYM_IDENTITY_REQ structure using the session key and the symmetric
algorithm from the algorithm parameter.

7. Place the encrypted TCPA_SYM_IDENTITY_REQ blob into the TCPA_IDENTITY_REQ.symBlob
field.

8. Create a TCPA_ASYM_IDENTITY_REQ structure and set TCPA_ASYM_IDENTITY_REQ
sessionkey to the session key created in step 3.

9. Encrypt the TCPA_ASYM_IDENTITY_REQ structure using the algorithm specified by the type of key
in caPubKey. The key for the encryption is caPubKey.

10. Place the encrypted TCPA_ASYM_IDENTITY_REQ blob into the TCPA_IDENTITY_REQ.asymBlob
field.

11. Return the TCPA_IDENTITY_REQ structure.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_BAD_PARAMETER Parameter not recognized.

TCPA_FAIL A critical system error occurred.

TCPA Main Specification Page 244

Version 1.0 25 January, 2001

9.3.3 Contacting a Privacy CA

Start of informative comment:

The operations and procedures of a Privacy CA are outside the scope of this specification.

The anticipation, however, is that a Privacy CA will use at least the following checks before agreeing to
attest to a TPM identity for a platform:

• Interpret the data structure “TCPA_IDENTITY_REQ” in the supplied data and validate the various
fields in the structure.

• The verification of the privacy CA’s public is inherent in the decryption of the TCPA_IDENTITY_REQ
structure. If the decryptions yield valid structures then the key was correct otherwise, the structures
are not properly formed and the key was bad.

• Interpret the conformance credential information in the supplied data in order to verify that the design
of the platform meets the TCPA specification and is in accordance with the policies of the Privacy CA.

• Interpret the platform-credential information in the supplied data in order to verify that the construction
of the platform meets the TCPA specification and is in accordance with the policies of the Privacy CA.

• Interpret the endorsement-credential information in the supplied data in order to verify that the
construction of the TPM meets the TCPA specification and is in accordance with the policies of the
Privacy CA.

• Create a TCPA_IDENTITY_CONTENTS structure and validate the signature of the area provided by
the new identity.

It is anticipated that a Privacy CA will then take the following actions:

1. Using the supplied data, construct a TPM-identity-credential according to the TCPA specification, and
sign the instantiation using a private key belonging to the Privacy CA.

2. Generate a session key. The assumption is that the session key comes from a suitable random
number generator that provides a suitable level of entropy.

3. Create the TCPA_SYM_CA_ATTESTATION structure.

4. Store the session key in TCPA_ASYM_CA_CONTENTS.

5. Create a digest of the identityPubKey. Store the digest value in TCPA_ASYM_CA_CONTENTS.

6. Encrypt the TCPA_ASYM_CA_CONTENTS structure using the PUBEK sent in the attestation
request.

7. Return the TCPA_SYM_CA_ATTESTATION structure and the encrypted
TCPA_ASYM_CA_CONTENTS structure

The symmetric algorithm should be the same algorithm that the TSS used in creating the
TCPA_IDENTITY_REQ structure. The asymmetric algorithm must be the algorithm that is defined by the
type of PUBEK.

End of informative comment.

TCPA Main Specification Page 245

Version 1.0 25 January, 2001

9.3.4 TPM_ActivateTPMIdentity

Start of informative comment:

The purpose of TPM_ActivateIdentity is to twofold. The first purpose is to obtain assurance that the
credential in the TCPA_SYM_CA_ATTESTATION is for this TPM. The second purpose is to obtain the
session key used to encrypt the TPM_IDENTITY_CREDENTIAL.

TPM_ActivateIdentity checks that the symmetric session key corresponds to a TPM-identity before
releasing that session key.

Only the Owner of the TPM has the privilege of activating a TPM identity. The Owner is required to
authorize the TPM_ActivateIdentity command. The owner may authorize the command using either the
TPM_OIAP or TPM_OSAP authorization protocols.

End of informative comment.

IDL Definition

 TCPA_RESULT TPM_ActivateTPMIdentity(
 [in, out] TCPA_AUTH* TpmOwnerAuth,
 [in, out] TCPA_AUTH* identityAuth,
 [AUTH, in] TCPA_KEY_SLOT Identity,
 [AUTH, in] UINT32 BlobSize,
 [AUTH, in, size_is(BlobSize)] BYTE* Blob,
 [AUTH, out] TCPA_NONCE* SymmetricKey);)
Type

TCPA protected capability; user must provide authorization from the TPM Owner to execute command.

Parameters

Type Name Description

TCPA_AUTH TpmOwnerAuth This SHALL be the authorization from the TPM Owner to
execute this command

TCPA_AUTH identityAuth This SHALL be the authorization to use the identity key (this is
to allow for the authorized execution of the internal validation)

TCPA_KEY_SL
OT

Identity This SHALL be the public key of the TPM identity that is
intended to be activated.

UINT32 BlobSize This SHALL be the size of the blob field

BYTE* Blob This SHALL be the encrypted TCPA_ASYM_CA_CONTENTS
structure from a privacy CA

TCPA_NONCE SymmetricKey This SHALL be the plaintext value of the session key recovered
from TCPA_ASYM_CA_CONTENTS structure

Description

The command TPM_ActivateIdentity activates a TPM identity created using the command
TPM_MakeIdentity.

The command assumes the availability of the private key associated with the identity. The command will
verify the association between the keys during the process.

The command will decrypt the TCPA_ASYM_CA_CONTENTS structure, extract the session key and
verify the connection between the public and private keys.

Actions

TCPA Main Specification Page 246

Version 1.0 25 January, 2001

A Trusted Platform Module that receives a valid TPM_ActivateIdentity command SHALL do the following:

1. Using the TpmOwnerAuth field, validate the owner’s authorization to execute the command and all of

2. Using the identityAuth field, validate the authorization to execute commands using the identity.

3. Decrypt the TCPA_CA_ASYM_CONTENTS structure. The decryption key is the TPM PRIVEK.

4. Compute a digest of the public key in the identity parameter. Compare the computed digest to the
value in the decrypted TCPA_CA_ASYM_CONTENTS structure. Return with the error code
TCPA_BAD_PARAMETER on a mismatch.

5. Validate that the identity private key belongs to this TPM.

6. Validate that the identity public key is the public key of a valid TPM identity. The validation process
does the following:

• Generate a nonce from the TPM RNG.

• Encrypt the nonce using the public key pointed to by identity.

• Decrypt the nonce using the private key assumed to be associated with the identity.

• Verify that the decryption matches the generated nonce.

7. Return the session key from the TCPA_CA_ASYM_CONTENTS structure.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_BAD_PARAMETER Parameter was not recognized.

TCPA_FAIL A critical system error occurred.

9.3.5 TSS_RecoverTPMIdentity

Start of informative comment:

The purpose of TSS_RecoverIdentity is to recover a plaintext copy of the data structure
TPM_IDENTITY_CREDENTIAL that attests that a particular identity belongs to a genuine TCPA Trusted
Platform.

The TSS_RecoverIdentity command is separate from the TPM_ActivateIdentity command because their
processing might be done on different engines. The reason is that TSS_RecoverIdentity does not have to
be trustworthy but TPM_ActivateIdentity must be trustworthy. Therefore, an implementation of
TSS_RecoverIdentity does not require the same protection as an implementation of
TPM_ActivateIdentity.

Exactly one entity may attest to a TPM identity.

Access to the TPM_IDENTITY_CREDENTIAL must be restricted to entities that have a “need to know.”
This is for reasons of privacy.

End of informative comment.

The command TSS_RecoverIdentity obtains a plaintext copy of the TPM_IDENTITY_CREDENTIAL
created by a Privacy CA.

If the data structure TPM_IDENTITY_CREDENTIAL is stored on a platform after an Owner has taken
ownership of that platform, it SHALL exist only in storage to which access is controlled and is only
available to authorized entities.

IDL Definition

 TCPA_RESULT TSS_RecoverTPMIdentity(

TCPA Main Specification Page 247

Version 1.0 25 January, 2001

 [in] TCPA_NONCE SessionKey,
 [in] UINT32 symAttSize,
 [in] UINT32 MaxCredentialSize,
 [in, size_is(symAttSize)] BYTE* symAtt,
 [in, out] UINT32* CredentialSize,
 [out, size_is(*CredentialSize)] BYTE* Credential);

Type

This is a TSS capability

Parameters

Type Name Description

TCPA_NONCE SessionKey This SHALL be the symmetric key decrypted by the
TPM_ActivateIdentity

UINT32 symAttSize This SHALL be the size of the symAtt parameter

UINT32 MaxCredentialSize This SHALL be the maximum size of the credential to be
output

BYTE* symAtt This SHALL be the TCPA_CA_SYM_ATTESTATION
structure

UINT32* CredentialSize This SHALL be the size of the credential

BYTE* Credential This SHALL be the decrypted
TCPA_IDENTITY_CREDENTIAL

Actions

A Trusted Platform Subsystem that receives a valid TSS_RecoverIdentity command SHALL do the
following:

1. Using the session key and the symmetric algorithm indicated by algorithm and the algorithm
parameters, decrypt credential parameter inside TCPA_CA_SYM_ATTESTATION to recover the
TPM_IDENTITY_CREDENTIAL.

2. The TSS SHOULD verify the self-consistency of TPM_IDENTITY_CREDENTIAL and abandon this
TSS_RecoverIdentity process if there is an inconsistency.

3. Export TPM_IDENTITY_CREDENTIAL.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_BAD_PARAMETER Parameter not recognized.

TCPA_FAIL A critical system error occurred.

TCPA Main Specification Page 248

Version 1.0 25 January, 2001

9.4 Instantiation of Data When Contacting a Privacy CA

Start of informative comment:

Unambiguous definition of data structures is necessary if those data are to be communicated between
platforms. An ASN.1 description is such an unambiguous definition.

This section describes the protocol messages to be sent from the Owner to the Privacy_CA and from the
Privacy_CA to the Owner during the procedure for obtaining a TPM identity. These messages will need to
be supported by suitable transport (and lower-layer) protocols. A number of alternatives exist for the
transport layer, including TCP, HTTP, e-mail, and FTP. However, specification of any of these alternatives
— including resolution of related issues such as naming/addressing, whether polling should be allowed,
and whether confirmation messages are required — is considered beyond the scope of this document.

Some of the data that is passed from the Privacy CA to the Owner is DER-encoded and must be used by
the TPM. This is not, however, a significant burden for the TPM.

The Owner receives from the Privacy CA the ASN.1 DER-encoded structure PCAResponse, which is a
SEQUENCE of version, encActivationKey, and enctpmIdCred. The Owner software (perhaps the TSS, or
perhaps some other module) parses this structure, pulls out the encActivationKey field (which is a {tag,
length, value} combination), and returns the “value” portion (which is simply a string of bits).

The Owner passes this “value” to the TPM. This “value,” as stated in the specification, is the ciphertext
resulting from the encryption, under the PUBEK, of a DER-encoded structure. Therefore, the TPM simply
decrypts the value it is handed using its PRIVEK. The resulting string of bits has the following format:

• tag1 length1 tag2 length2 value2 tag3 length3 value3

• The first field (“tag1”) is an identifier for SEQUENCE and takes up one byte. The next field (“length1”)
reports the number of octets (i.e., bytes) remaining in the entire string, and also takes up one byte.
“tag2” is an identifier for BIT STRING and takes up one byte. “length2” reports the length in bytes of
“value2” and takes up two bytes. “value2” is the result of hashing tpmIdKey (e.g., if SHA-1 is used, it
is 160 bits in length, but the TPM will already know this so it doesn't need to understand “length2” in
order to figure this out). “tag3” is an identifier for BIT STRING and takes up one byte. “length3”
reports the length in bytes of “value3” and takes up two bytes. “value3” is the symmetric key. (Note

e a length of 128 bits for one symmetric cipher, 168 for another, and 256 for yet
another, but the TPM does not need to determine this from “length3.” Instead, it simply reads to the
end of the string).

In short, therefore, the TPM does the following on decryption:

• skips five bytes;

• reads the next (say 160, if SHA-1 is used) bits and compares this to the table of hashed, inactivated
public keys that it has stored(if there is a match it proceeds, otherwise, it aborts the operation);

• skips the next three bytes;

• reads the remaining bytes (until the end of the string) into a buffer; and

• returns this buffer to the Owner as the symmetric key.

End of informative comment.

9.4.1 From Owner to Privacy CA

The protocol from the Owner to the Privacy CA SHALL consist of the following IdentityRequest message:

IdentityRequest ::= SEQUENCE {
 version Version,
 encSessionKey EncSessionKey,
 encRequest EncRequest
}

TCPA Main Specification Page 249

Version 1.0 25 January, 2001

Version ::= INTEGER
-- the version number, for compatibility with future revisions of this
specification. It shall be 0 for this version of the specification.

EncSessionKey ::= BIT STRING
-- the ciphertext resulting from the encryption (under the public identity
key of the Privacy CA) of a randomly generated symmetric key (which itself is
DER-encoded as a BIT STRING).

EncRequest ::= BIT STRING
-- the ciphertext resulting from the encryption (under the session key
above) of the following DER-encoded data structure:

"Request ::= SEQUENCE {
tpmIdKey SubjectPublicKeyInfo, -- new public key
tpmIdLabel OCTET STRING, -- identity label
tcpaVersion TCPASpecVersion, -- “major.minor”
identityBinding BIT STRING, -- (see below)
endorsementCred Certificate, -- X.509v3 PK cert
platformCred Certificate, -- X.509 attr. cert
conformanceCred Certificate -- X.509 attr. cert
}"

--
-- SubjectPublicKeyInfo
(a SEQUENCE of an AlgorithmIdentifier and a BIT STRING) is specified in
X.509. The BIT STRING contains the subject’s public key (for example, if the
algorithm specified is rsaEncryption, the BIT STRING contains the BER
encoding of a value of PKCS #1 type “RSAPublicKey”).

-- “identityBinding” is the signature value(using the newly generated TPM
private key that corresponds with the tpmIdKey) over the data specified in
Section. How that data is formatted or delimited is beyond the scope of the
protocol specified here; however, the formatting chosen must be known to
both the TPM and the Privacy CA.

9.4.2 From Privacy CA to Owner

The protocol from the Privacy CA to the Owner consists of the PCAResponse message:

PCAResponse ::= SEQUENCE {
 version Version,
 symmAlg AlgorithmIdentifier,
 encActivationKey EncActivationKey,
 enctpmIdCred EnctpmIdCred
}
EncActivationKey ::= BIT STRING
-- the ciphertext resulting from the encryption (under the PUBEK of the TPM)
of the following DER-encoded data structure:
--
-- ActivationKey ::= SEQUENCE {
-- idKeyDigest BIT STRING, -- hash of tpmIdKey
-- symmetricKey BIT STRING
-- }
--
-- NOTE: the validity of the entire protocol for obtaining a TPM identity
depends critically upon the assumption that a genuine TPM will only ever

TCPA Main Specification Page 250

Version 1.0 25 January, 2001

decrypt data using its PRIVEK as part of the TPM_ActivateIdentity() call. An
Owner will never be able to ask a TPM for the decryption of arbitrary data
that has been encrypted with its PUBEK. Furthermore, the difficulty of
successfully impersonating a TPM is ultimately bound to the computational
complexity of finding a collision for idKeyDigest. It is therefore STRONGLY
RECOMMENDED that the digest be computed using the full output of a
cryptographic hash algorithm of sufficient strength (e.g., the full 160 bits
of SHA-1).

EnctpmIdCred ::= BIT STRING
-- the ciphertext resulting from the encryption (under the symmetric
activation key above) of the tpmIdentityCred (which is itself DER-encoded
as an X.509 PK Certificate).

TCPA Main Specification Page 251

Version 1.0 25 January, 2001

9.5 Instantiation of Credentials as Certificates

Start of informative comment:

Unambiguous definition of a data structure containing credentials is necessary if those credentials are to
be communicated between platforms. A certificate is such an unambiguous definition.

End of informative comment.

Certificate syntax

TCPA certificate syntax conforms with the definitions for public-key certificates and attribute certificates in
X.509. The following TCPA certificate types are public-key certificates:

• TPM endorsement certificate

• TPM identity certificate

The following TCPA certificate types are attribute certificates:

• Platform endorsement certificate

• Platform conformance certificate

• Validation data certificate

The form of the following certificates is out of scope for this version of the TPM specification:

• TPM endorsement entity certificate

• TCPA component endorsement entity certificate

• Platform endorsement entity certificate

• Platform conformance certificate

TCPA Main Specification Page 252

Version 1.0 25 January, 2001

9.5.1 Instantiation of TPM_ENDORSEMENT_CREDENTIALs

Start of informative comment:

An endorsement certificate is an instantiation of an TPM_ENDORSEMENT_CREDENTIAL.

Access to an endorsement certificate must be restricted to entities that have a “need to know.” This is for
reasons of privacy.

This definition assumes that the PUBEK is a 2048bit RSA keys.

End of informative comment.

If the data structure <endorsement_certificate> is stored on a platform after an Owner has taken
ownership of that platform, it SHALL exist only in storage to which access is controlled and is available to
authorized entities.

Overview

The TPM endorsement certificate represents an assertion by the TPM endorsement entity that the
referenced TPM conforms with the TCPA TPM specification.

Profile

Notes:

• Some fields are assigned a value even though the certificate user performs no action based on
that value. In such cases, the intention is to inhibit non-TCPA implementations from making
inappropriate use of the certificate.

• It is intended that the lifetime of a TPM will be shorter than the crypto-period of the TPM
endorsement public and private keys. Therefore, keys are not “rolled-over”.

• The trustworthiness of the architecture is vulnerable to the compromise of a single TPM
endorsement private key. However, the architecture does not include a revocation mechanism.
Nevertheless, certain forms of revocation scheme can be retrofitted, should it become necessary
at some time in the future.

In the case of the TPM endorsement certificate, the issuer is the TPM endorsement entity and the user is
a Privacy CA.

Field Issuer action User action

Version Assign value 2 (v3). Check value = 2, else reject.

Serial number Assign a value unique amongst all
certificates issued by “issuer”.

Use in validating the platform endorsement
and conformance certificates.

Signature Assign the algorithm identifier sha-
1WithRSAEncryption
(1:2:840:113549:1:1:5).

Check the algorithm identifier =
1:2:840:113549:1:1:5, else reject. Validate
the signature on the certificate using the
public key of the TPME (which shall be a
2048-bit RSA key), obtained by an out-of-
band means and referenced by “issuer” and
“authority key identifier”.

Issuer The distinguished name of the
TPM endorsement entity. That is
the entity that asserts that the
subject TPM conforms with the
TCPA specification. (Note: this
may be the TPM manufacturer or a
conformance test laboratory.)

Check that the name is the name of one of
the acceptable TPM endorsement entities,
use in validating the platform endorsement
and conformance certificates.

TCPA Main Specification Page 253

Version 1.0 25 January, 2001

Validity Assign notBefore to the current
time and notAfter to a later time
(maybe the latest time permitted by
the encoding scheme).

Check that the current time is later than the
notBefore time, else reject.

Subject Assign the value NULL. No action.

Subject public
key info

Assign algorithm identifier RSAES-
OAEP (1:2:840:113549:1:1:7).
Include a 2048-bit RSA public key
for key encipherment with OAEP
formatting. (Note: this is the TPM
public endorsement key.)

Use the public key in the TPM identity
protocol.

Issuer unique
identifier

Omit. No action.

Subject unique
identifier

Omit. No action.

Extensions

Authority key
identifier

Assign "critical" the value FALSE.
Assign the value of “subject key
identifier” from the manufacturer’s
certificate, if available, else omit.

Use to locate the certificate that contains a
public key of the manufacturer with which the
signature on this certificate can be verified.

Subject key
identifier

Omit. No action.

Key usage May be omitted. If included, then
the key encipherment bit shall be
set TRUE.

If present, then check that the key
encipherment bit is TRUE, else reject.

Extended key
usage

Omit. If present and marked critical, then reject.

Private key
usage period

Omit. If present, then check that the current time is
later than the notBefore time.

Certificate
policies

Assign “critical” the value TRUE.
Assign policyIdentifier at least one
object identifier. Assign the cPSuri
policy qualifier the value of an
HTTP URL at which a plain
language version of the TPM
endorsement entity's certificate
policy may be obtained. Assign
the explicit text userNotice policy
qualifier the value “TCPA Trusted
Platform Module Endorsement”.

Check that at least one acceptable
policyIdentifier value is present. Transfer the
acceptable policyInformation value to the
TPM identity certificate “certificate policies”
extension.

Policy mappings Omit. No action.

Subject
alternative name

Assign "critical" the value FALSE.
Include the TPM identity, using the
directory name-form with RDNs for
the TPM manufacturer, model and
version numbers.

Check that the TPM manufacturer, model
and version numbers are acceptable.
Transfer to the TPM identify certificate
“subject alternative name” extension value
for the TPM.

Issuer alternative
name

Omit. No action.

TCPA Main Specification Page 254

Version 1.0 25 January, 2001

Subject directory
attributes

Include a “subject directory
attributes” extension. Assign
"critical" the value FALSE. Include
the multi-valued attribute
“supported algorithms” (see
X.509). Include object identifiers
for the following algorithms:
RSAES-OAEP, SHA-1
(1.3.14.3.2.26) and TPM identity
protocol.

Adapt the TPM identity protocol to use only
algorithms supported by the TPM.

 Include the "TCPA Specification
Version" attribute, with field values
correctly reflecting the highest
version of the TCPA specification
with which the TPM
implementation conforms.

Check that the TCPA specification version is
acceptable, else reject.

 Optionally, include the "security
qualities" attribute with a text string
reflecting the security qualities of
the TPM. (Note: this is the TPM
distributed validation.)

Optionally (and if present), check whether
the TPM implementation has acceptable
security qualities. Transfer to the TPM
identity certificate “subject directory
attributes” extension.

Basic constraints Assign “critical” the value TRUE.
Assign “CA” the value FALSE

No action.

Name constraints Omit. No action.

Policy constraints Omit. No action.

Inhibit any policy Omit. No action.

CRL distribution
points

Omit. If present and marked critical, then reject.

TCPA Main Specification Page 255

Version 1.0 25 January, 2001

9.5.2 Instantiation of Platform_credentials

Start of informative comment:

A platform certificate is an instantiation of a platform_credential.

Access to the platform certificate must be restricted to entities that have a “need to know.” This is for
reasons of privacy.

End of informative comment.

If the data structure <platform_certificate> is stored on a platform after an Owner has taken ownership of
that platform, it SHALL exist only in storage to which access is controlled and is available to authorized
entities.

Overview

The Platform Endorsement Certificate represents an assertion by the platform endorsement entity that the
referenced platform incorporates a TPM and an RTM in a manner that conforms with the TCPA
specification.

Profile

Note: some fields are assigned a value even though the certificate user performs no action with that
value. In such cases, the intention is to inhibit non-TCPA implementations from making inappropriate use
of the certificate.

In the case of the Platform endorsement certificate, the issuer is the platform manufacturer and the user
is a Privacy CA.

Field Issuer action User action

Version Assign value 1 (v2). Check value = 1, else reject.

Holder BaseCertificateID referencing the
corresponding TPM endorsement
certificate. (Note: this is the TPM
credential reference.)

Check that the certificate ID correctly
references the TPM endorsement certificate
used to validate the TPM identity request
message, else reject.

Issuer The distinguished name of the
platform endorsement entity. That is
the entity that asserts that the subject
platform incorporates a TPM and
RTM in a manner that conforms with
the TCPA specification. (Note: this
may be the platform manufacturer or
a conformance test laboratory.)

Check that the name is the name of one of
the acceptable platform endorsement
entities.

Signature Assign algorithm identifier sha-
1WithRSAEncryption
(1:2:840:113549:1:1:5).

Check algorithm identifier =
1:2:840:113549:1:1:5, else reject. Validate
the signature on the certificate using the
public key of the Platform Endorsement
Entity (which should be a 2048-bit RSA key),
obtained by an out-of-band means and
referenced by “issuer” and “authority key

Serial number Assign a value unique amongst all
certificates issued by “issuer”.

No action.

attrCertValidity
Period

Assign notBefore to the current time
and notAfter to a later time (maybe
the latest time permitted by the
encoding scheme).

Check that the current time is later than the
notBefore time, else reject.

TCPA Main Specification Page 256

Version 1.0 25 January, 2001

encoding scheme).

Attributes A “supported algorithms” attribute
(see X.509) indicating the
cryptographic algorithms supported by
the platform.

Transfer the object identifiers for any
acceptable algorithms to the TPM identity
certificate “subject directory attributes”
extension.

 Include the "TCPA Specification
Version" attribute, with field values
correctly reflecting the highest version
of the TCPA specification with which
the platform implementation
conforms.

Check that the TCPA specification version is
acceptable, else reject.

 If the TPM has been successfully
evaluated against a Common Criteria
protection profile, then include the
TPM protection profile identifier
attribute.

Optionally, check whether the identifier is
acceptable. Transfer the protection profile
identifier to the TPM identity certificate.

 If the TPM has been successfully
evaluated against a Common Criteria
security target, then include the TPM
security target identifier attribute.

Optionally, check whether the identifier is
acceptable. Transfer the security target
identifier to the TPM identity certificate.

 If the RTM and the means by which
the TPM and RTM have been
incorporated into the platform have
been successfully evaluated against a
Common Criteria protection profile,
then include the "foundation
protection profile" identifier attribute.

Optionally, check whether the identifier is
acceptable. Transfer the protection profile
identifier to the TPM identity certificate
"subject directory attributes" extension.

 If the RTM and the means by which
the TPM and RTM have been
incorporated into the platform have
been successfully evaluated against a
Common Criteria security target, then
include the "foundation security
target" identifier attribute.

Optionally, check whether the identifier is
acceptable. Transfer the security target
identifier to the TPM identity certificate
"subject directory attributes" extension.

 If there is, or will be, a Platform
Conformance Certificate, then a
ConformanceCertificateLocation
attribute should be included to
indicate how, and from where, it can
be retrieved.

Use the information to locate and retrieve the
corresponding Platform Conformance
Certificate.

 Optionally, include the "security
qualities" attribute with a text string
reflecting the security qualities of the
platform. (Note: this is the platform
distributed validation.)

Optionally (and if present), check whether
the platform implementation has acceptable
security qualities. Transfer to the TPM
identity certificate "subject directory
attributes" extension.

Issuer unique
identifier

Omit. No action.

Extensions

Certificate
policies

Assign “critical” the value TRUE.
Assign policyIdentifier at least one
object identifier. Assign the cPSuri

Check that at least one acceptable
policyIdentifier value is present. Transfer the
policyInformation value to the TPM identity

TCPA Main Specification Page 257

Version 1.0 25 January, 2001

policies object identifier. Assign the cPSuri
policy qualifier the value of an HTTP
URL at which a plain language
version of the platform manufacturer’s
certificate policy may be obtained.
Assign the explicit text userNotice
policy qualifier the value “TCPA
Trusted Platform Endorsement”.

policyInformation value to the TPM identity
certificate "certificate policies" extension.

Subject
alternative
name

Assign “critical” the value FALSE.
Include the platform name, uniquely
identifying the type of the platform
with RDNs for the manufacturer,
model and version numbers.

Check that the manufacturer, model and
version numbers are acceptable. Transfer to
the TPM identity certificate “subject
alternative name” extension.

Authority key
identifier

Assign “critical” the value FALSE.
Assign the value of “subject key

from the platform
endorsement entity certificate, if
available, else omit.

The certificate user may use this value to
locate the certificate that contains a public
key of the platform endorsement entity with
which the signature on this certificate can be
verified.

SOA Identifier Omit. No action.

Authority
Attribute
Identifier

Omit. No action.

Role
Specification
Certificate
Identifier

Omit. No action.

Basic Attribute
Constraints

Assign “critical” the value TRUE.
Assign “authority” the value FALSE.

Check that “authority” is FALSE.

Delegated
Name
Constraints

Omit. No action.

Time
Specification

Omit. No action.

Acceptable
Certificate
Policies

Assign “critical” the value TRUE.
Assign one or more of the values of
policyIdentifier from the certificate
policies extension of the TPM
endorsement certificate.

Check that the certificate policies extension
of the TPM endorsement certificate contains
at least one of the values.

Attribute
Descriptor

Omit. No action.

User Notice Omit. No action.

No Rev
Available

Omit. No action.

Acceptable
Privilege
Policies

Omit. No action.

TCPA Main Specification Page 258

Version 1.0 25 January, 2001

9.5.3 Instantiation of TPM_CONFORMANCE_CREDENTIAL

Overview

The Platform Conformance Certificate represents an assertion by the platform conformance entity that the
referenced platform conforms with the TCPA specification.

Profile

Note: some fields are assigned a value even though the certificate user performs no action with that
value. In such cases, the intention is to inhibit non-TCPA implementations from making inappropriate use
of the certificate.

In the case of the Platform conformance certificate, the issuer is the platform manufacturer and the user
is a Privacy CA.

Field Issuer action User action

Version Assign value 1 (v2). Check value = 1, else reject.

Holder Include the platform name, uniquely
identifying the type of the platform
with RDNs for the manufacturer,
model and version numbers.

Check that the value is the same as the
value in the corresponding Platform
Endorsement Certificate, Subject Alternative
Name extension, else reject.

Issuer The distinguished name of the
platform conformance entity. That is
the entity that asserts that the design
of the platform conforms with the
TCPA specification. (Note: this may
be the platform manufacturer or a
conformance test laboratory.)

Check that the name is the name of one of
the acceptable platform conformance
entities.

Signature Assign algorithm identifier sha-
1WithRSAEncryption
(1:2:840:113549:1:1:5).

Check algorithm identifier =
1:2:840:113549:1:1:5, else reject. Validate
the signature on the certificate using the
public key of the platform conformance entity
(which should be a 2048-bit RSA key),
obtained by an out-of-band means and
referenced by “issuer” and “authority key

Serial number Assign a value unique amongst all
certificates issued by “issuer”.

No action.

attrCertValidity
Period

Assign notBefore to the current time
and notAfter to a later time (maybe
the latest time permitted by the
encoding scheme).

Check that the current time is later than the
notBefore time, else reject.

Attributes Include a “supported algorithms”
attribute (see X.509) indicating the
algorithms supported by the platform.

Transfer the object identifiers for any
acceptable algorithms to the TPM identity
certificate “subject directory attributes”
extension.

 Include the "TCPA specification
version" attribute, with field values
correctly reflecting the highest version
of the TCPA specification with which
the platform implementation
conforms.

Check that the TCPA specification version is
acceptable, else reject.

TCPA Main Specification Page 259

Version 1.0 25 January, 2001

 If the TPM has been successfully
evaluated against a Common Criteria
protection profile, then include the
TPM protection profile identifier
attribute.

Check that the identifier is acceptable.
Transfer the protection profile identifier to the
TPM identity certificate.

 If the TPM has been successfully
evaluated against a Common Criteria
security target, then include the TPM
security target identifier attribute.

Check that the identifier is acceptable.
Transfer the security target identifier to the
TPM identity certificate.

 If the RTM and means by which the
RTM and TPM are incorporated into
the platform has been successfully
evaluated against a Common Criteria
protection profile, then include the
foundation protection profile identifier
attribute.

Check that the identifier is acceptable.
Transfer the protection profile identifier to the
TPM identity certificate "subject directory
attributes" extension.

 If the RTM and the means by which
the RTM and TPM have been
incorporated into the platform have
been successfully evaluated against a
Common Criteria security target, then
include the foundation security target
identifier attribute.

Check that the identifier is acceptable.
Transfer the security target identifier to the
TPM identity certificate "subject directory
attributes" extension.

Issuer unique
identifier

Omit. No action.

Extensions

Certificate
policies

Assign “critical” the value TRUE.
Assign policyIdentifier at least one
object identifier. Assign the cPSuri
policy qualifier the value of an HTTP
URL at which a plain language
version of the platform conformance
entity's certificate policy may be
obtained. Assign the explicit text
userNotice policy qualifier the value
“TCPA Conformance Credential”.

Check that at least one acceptable
policyIdentifier value is present. Transfer the
policyInformation value to the TPM identity
certificate.

Subject
alternative
name

Assign “critical” the value FALSE.
Include the platform name, uniquely
identifying the type of the platform
with RDNs for the platform
manufacturer, model and version
numbers.

Check that the manufacturer, model and
version numbers are identical to those in the
platform endorsement certificate "subject
alternative name" extension.

Authority key
identifier

Assign “critical” the value FALSE.
Assign the value of “subject key
identifier” from the platform
conformance entity's public-key
certificate, if available, else omit.

The certificate user may use this value to
locate the certificate that contains a public
key of the platform conformance entity with
which the signature on this certificate can be
verified.

SOA Identifier Omit. No action.

Authority
Attribute
Identifier

Omit. No action.

TCPA Main Specification Page 260

Version 1.0 25 January, 2001

Identifier

Role
Specification
Certificate
Identifier

Omit. No action.

Basic Attribute
Constraints

Assign “critical” the value TRUE.
Assign “authority” the value FALSE.

Check that “authority” is FALSE.

Delegated
Name
Constraints

Omit. No action.

Time
Specification

Omit. No action.

Acceptable
Certificate
Policies

Omit. No action.

Attribute
Descriptor

Omit. No action.

User Notice Omit. No action.

No Rev
Available

Omit. No action.

Acceptable
Privilege
Policies

Omit. No action.

TCPA Main Specification Page 261

Version 1.0 25 January, 2001

9.5.4 Instantiation of Validation Certificate

Start of informative comment:

A “Validation Data Attribute Certificate” is an instantiation of validation data.

End of informative comment.

Overview

The validation data certificate represents an assertion by the component validation entity that the
component instructions referenced by the certificate have the attributes conveyed in the certificate. The
certificate syntax conforms with the X.509 definition for an attribute certificate.

In the case of the validation certificate, the issuer is the Validation Entity and the user is a TPS.

Field Issuer action User action

Version Assign value 1 (v2). Check value = 1, else reject.

Holder ObjectDigestInfo with missing object
identifier. The value of objectDigest shall
be the digest calculated over the memory
image of the software instructions using
the identified digest algorithm.

Calculate the digest of the memory
image of the software instructions and
check that it is identical to the value in
this field prior to passing control to the
component, else reject.

Issuer The distinguished name of the
component validation entity. That is the
entity that asserts that the component
exhibits the attributes contained in the
certificate. (Note: typically, but not
necessarily, the manufacturer of the
component).

Check that the name is the name of one
of the acceptable component validation
entities.

Signature Assign algorithm identifier sha-
1WithRSAEncryption
(1:2:840:113549:1:1:5).

Check algorithm identifier =
1:2:840:113549:1:1:5, else reject.
Validate the signature on the certificate
using the public key of the software
manufacturer (which should be a 2048-bit
RSA key), obtained by an out-of-band
means and referenced by “issuer” and
“authority key identifier”.

Serial number Assign a value unique amongst all
certificates issued by “issuer”.

No action.

attrCertValidityPe
riod

Assign notBefore to the current time and
notAfter to a later time (maybe the latest
time permitted by the encoding scheme).

Check that the current time is later than
the notBefore time, else reject.

Attributes Include the "TCPA specification version"
attribute, with field values correctly
reflecting the highest version of the
TCPA specification with which the
component conforms.

Check that the TCPA specification
version is acceptable, else reject.

 Optionally, include the "security qualities"
attribute with a text string reflecting the
security qualities of the component.
(Note: this is the component distributed
validation.)

Optionally (and if present), check
whether the component implementation
has acceptable security qualities.

TCPA Main Specification Page 262

Version 1.0 25 January, 2001

Issuer unique
identifier

Omit. No action.

Extensions

Certificate
policies

Assign “critical” the value TRUE. Assign
policyIdentifier at least one object
identifier. Assign the cPSuri policy
qualifier the value of an HTTP URL at
which a plain language version of the
component conformance entity's
certificate policy may be obtained.
Assign the explicit text userNotice policy
qualifier the value “TCPA Validation

Check that at least one acceptable
policyIdentifier value is present.

Subject
Alternative Name

Assign "critical" the value FALSE.
Include the component name, using the
"component name" attribute, with RDNs
for the component manufacturer, model
and version numbers.

May be used to determine whether or not
the component is trustworthy.

Authority key
identifier

Assign “critical” the value FALSE. Assign
the value of “subject key identifier” from
the component validation entity
certificate, if available, else omit.

The certificate user may use this value to
locate the certificate that contains a
public key of the component validation
entity with which the signature on this
certificate can be verified.

SOA Identifier Omit. No action.

Authority
Attribute
Identifier

Omit. No action.

Role
Specification
Certificate
Identifier

Omit. No action.

Basic Attribute
Constraints

Assign “critical” the value TRUE. Assign
“authority” the value FALSE.

Check that “authority” is FALSE.

Delegated Name
Constraints

Omit. No action.

Time
Specification

Omit. No action.

Acceptable
Certificate
Policies

Omit. No action.

Attribute
Descriptor

Omit. No action.

User Notice Omit. No action.

No Rev Available Omit. No action.

Acceptable
Privilege Policies

Omit. No action.

TCPA Main Specification Page 263

Version 1.0 25 January, 2001

TCPA Main Specification Page 264

Version 1.0 25 January, 2001

9.5.5 Instantiation of TPM_IDENTITY_CREDENTIAL

Start of informative comment:

A TPM identity certificate is an instantiation of a TPM_IDENTITY_CREDENTIAL.

Access to the TPM identity certificate must be restricted to entities that have a “need to know.” This is for
reasons of privacy.

This definition assumes that TPM identity keys are 2048bit RSA keys.

End of informative comment.

If the data structure <TPM identity certificate> is stored on a platform after an Owner has taken ownership
of that platform, it SHALL exist only in storage to which access is controlled and is available to authorized
entities.

Overview

The TPM identity certificate represents an assertion by the Privacy CA that the referenced TPM identity is
controlled by a TPM that conforms with the TPM specification. It contains a different public key to that
contained in the TPM endorsement certificate, but it contains identifying and policy information transferred
from the TPM endorsement, platform endorsement and platform conformance certificates.

Profile

Note:

• Some fields are assigned a value even though the certificate user performs no action with that
value. In such cases, the intention is to inhibit non-TCPA implementations from making
inappropriate use of the certificate.

• The policies identified in the TPM and platform certificates are represented by oids and are not
distinguishable except by reference to the contents of the policies themselves. The verifier,
however, must be able to distinguish between the different policy types.

In the case of the TPM identity certificate, the issuer is the Privacy CA and the user is an integrity
verifier.

Field Issuer action User action

Version Assign value 2 (v3). Check value = 2, else reject.

Serial number Assign a value unique amongst all
certificates issued by “issuer”.

No action.

Signature Assign algorithm identifier sha-
1WithRSAEncryption
(1:2:840:113549:1:1:5).

Check the algorithm identifier =
1:2:840:113549:1:1:5, else reject. Validate
the signature on the certificate using the
public key of the Privacy CA (which should
be a 2048-bit RSA key), obtained by an out-
of-band means and referenced by “issuer”
and “authority key identifier”.

Issuer The distinguished name of the Privacy
CA.

Check that the name is the name of an
acceptable Privacy CA.

Validity Assign notBefore to the current time
and notAfter to a later time (maybe
the latest time permitted by the
encoding scheme).

Check that the current time is later than the
notBefore time, else reject.

Subject NULL. No action.

Subject public
key info

Assign algorithm identifier sha-
1WithRSAEncryption

Check algorithm identifier =
1:2:840:113549:1:1:5, else reject. Use the

TCPA Main Specification Page 265

Version 1.0 25 January, 2001

key info 1WithRSAEncryption
(1:2:840:113549:1:1:5). The 2048-bit
RSA public key provided to the
Privacy CA by the TPM owner in the
identity request message.

1:2:840:113549:1:1:5, else reject. Use the
public key in the integrity verification
procedure.

Issuer unique
identifier

Omit. No action.

Subject
unique
identifier

Omit. No action.

Extensions

Authority key
identifier

Assign “critical” the value FALSE.
Assign the value of “subject key
identifier” from the Privacy CA’s
public-key certificate, if available, else
omit.

The certificate user may use this value to
locate the certificate that contains a public
key of the Privacy CA with which the
signature on this certificate can be verified.

Subject key
identifier

Omit. No action.

Key usage May be omitted. If included, then the
digital signature bit shall be set TRUE.

If present, then check that the digital
signature bit is TRUE, else reject.

Extended key
usage

Omit. If present and marked critical, then reject.

Private key
usage period

Omit. If present, then check that the current time is
later than the notBefore time, else reject.

Certificate
policies

Assign “critical” the value TRUE.
Assign policyIdentifier at least one
object identifier. Optionally, assign
the cPSuri the value of an HTTP URL
at which a plain language version of
the Privacy CA’s certificate policy may
be obtained. Assign the explicit text
userNotice policy qualifier the value
“TCPA Trusted Platform Identity”.
Also, include the policyInformation
values from the certificate policies
extensions of the TPM endorsement
and platform endorsement and
conformance certificates provided in
the TPM identity request message.

Check that at least one acceptable Privacy
CA policyIdentifier value is present.
Optionally, check that at least one
acceptable TPM endorsement, one
acceptable platform endorsement and one
acceptable platform conformance
policyIdentifier value are present.

Policy
mappings

Omit. No action.

Subject
alternative
name

Assign “critical” the value FALSE.
Include three values in the extension:

The TPM manufacturer, model and
version numbers from the TPM
endorsement certificate “subject
alternative name” extension provided
in the TPM identity request message;

The platform manufacturer, model
and version numbers from the

Check that the manufacturer, model and
version numbers of the TPM and of the
platform are acceptable.

TCPA Main Specification Page 266

Version 1.0 25 January, 2001

and version numbers from the
platform endorsement certificate
“subject alternative name” extension
provided in the TPM identity request
message; and

The TPM identity label provided to the
Privacy CA by the TPM owner in the
identity request message, encoded as
a TPMIdLabel other-name. The TPM
owner should choose a label syntax
and semantics that are understood by
the integrity verifier. (Note: the
specified syntax accommodates multi-
byte character sets).

Issuer
alternative
name

Omit. No action.

Subject
directory
attributes

Assign “critical” the value FALSE.
Include a multi-valued “supported
algorithms” (see X.509) attribute
containing object identifiers from the
“subject directory attributes” extension
of the TPM endorsement certificate
and the “attributes” field of the
platform endorsement certificate and
the platform conformance certificate
provided in the TPM identity request
message.

Adapt the integrity verification protocol to use
only algorithms supported by the TPM and
the associated platform.

 Include the single-valued "TPM
protection profile" attribute from the
platform endorsement certificate
provided in the TPM identity request
message.

Check that the identifier is acceptable.

 Include the single-valued "TPM
security target" attribute from the
platform endorsement certificate
provided in the TPM identity request
message.

Check that the identifier is acceptable.

 Include the single-valued "Foundation
protection profile" attribute from the
platform endorsement certificate
provided in the TPM identity request
message.

Check that the identifier is acceptable.

 Include the single-valued "Foundation
security target" attribute from the
platform endorsement certificate
provided in the TPM identity request
message.

Check that the identifier is acceptable.

 Include the "security qualities"
attribute from the TPM endorsement
certificate provided in the TPM identity
request message. (Note: this is the
TPM distributed validation.)

Optionally (and if present), check whether
the TPM has acceptable security qualities.

TCPA Main Specification Page 267

Version 1.0 25 January, 2001

TPM distributed validation.)

 Include the "security qualities"
attribute from the platform
endorsement certificate provided in
the TPM identity request message.
(Note: this is the platform distributed
validation.)

Optionally (and if present), check whether
the platform has acceptable security
qualities.

 Include the "tcpaVersion" attribute
provided in the TPM identity request
message.

Check that the TCPA specification version is
acceptable, else reject.

Basic
constraints

Assign “critical” the value TRUE.
Assign “CA” the value FALSE.

No action.

Name
constraints

Omit. No action.

Policy
constraints

Omit. No action.

Inhibit any
policy

Omit. No action.

CRL
distribution
points

Omit. If present and marked critical, then reject.

TCPA Main Specification Page 268

Version 1.0 25 January, 2001

9.5.6 ASN.1 Definitions

Start of informative comment:

The intention is to register TCPA as an “international body” in the ISO registration hierarchy. This will lead
to shorter oids (object identifiers) and gives TCPA autonomy in the management of its own object
identifiers.

End of informative comment.

The syntax of the "security qualities" attribute is as follows:

SecurityQualities ATTRIBUTE ::= {
WITH SYNTAX SecurityQualities
ID tcpa-tpmSecurityQualities }

SecurityQualities ::= SEQUENCE {

version INTEGER, --0 for this version of the attribute syntax --
statement [0] UTF8String }

Note: future versions of this certificate profile may define additional, optional, "security qualities" fields.
Inclusion of the "statement" field will remain mandatory.

The syntax of the "TCPA Specification Version" attribute is as follows:

TCPASpecVersion ATTRIBUTE ::= {
WITH SYNTAX TCPASpecVersion
ID tcpa-specVersion }

TCPASpecVersion ::= SEQUENCE {

major INTEGER,
minor INTEGER }

The syntax of the protection profile and security target attributes is as follows:

TPMProtectionProfile ATTRIBUTE ::= {
WITH SYNTAX ProtectionProfile
ID tcpa-at-tpmProtectionProfile }

TPMSecurityTarget ATTRIBUTE ::= {

WITH SYNTAX SecurityTarget
ID tcpa-at-tpmSecurityTarget }

FoundationProtectionProfile ATTRIBUTE ::= {

WITH SYNTAX ProtectionProfile
ID tcpa-at-foundationProtectionProfile }

FoundationSecurityTarget ATTRIBUTE ::= {

WITH SYNTAX SecurityTarget
ID tcpa-at-foundationSecurityTarget }
ProtectionProfile ::= OBJECT IDENTIFIER
SecurityTarget ::= OBJECT IDENTIFIER

The syntax of the "component name" attribute is as follows:

ComponentName ATTRIBUTE ::= {
WITH SYNTAX Name
ID tcpa-at-componentName }

TCPA Main Specification Page 269

Version 1.0 25 January, 2001

The following definitions define the syntax of the RDNs used in the subject alternative name extension to
identify the type of the TPM and the platform.

TpmManufacturer ATTRIBUTE ::= {
WITH SYNTAX UTF8String
ID tcpa-at-tpmManufacturer }

TpmModel ATTRIBUTE ::= {

WITH SYNTAX UTF8String
ID tcpa-at-tpmModel }

TpmVersion ATTRIBUTE ::= {

WITH SYNTAX UTF8String
ID tcpa-at-tpmVersion }

PlatformManufacturerl ATTRIBUTE ::= {

WITH SYNTAX UTF8String
ID tcpa-at-platformManufacturer }

PlatformModel ATTRIBUTE ::= {

WITH SYNTAX UTF8String
ID tcpa-at-platformModel }

PlatformVersion ATTRIBUTE ::= {

WITH SYNTAX UTF8String
ID tcpa-at-platformVersion }

TPMIdLabel OTHER-NAME ::= {UTF8String IDENTIFIED BY {tcpa-at-tpmIdLabel}}

--Object identifier assignments—

tcpa OBJECT IDENTIFIER ::= {TBD}
tcpa-specVersion OBJECT IDENTIFIER ::= {tcpa-1}
tcpa-attribute OBJECT IDENTIFIER ::= {tcpa-2}
tcpa-protocol OBJECT IDENTIFIER ::= {tcpa-3}
tcpa-at-tpmManufacturer OBJECT IDENTIFIER ::= {tcpa-attribute 1}
tcpa-at-tpmModel OBJECT IDENTIFIER ::= {tcpa-attribute 2}
tcpa-at-tpmVersion OBJECT IDENTIFIER ::= {tcpa-attribute 3}
tcpa-at-platformManufacturer OBJECT IDENTIFIER ::= {tcpa-attribute 4}
tcpa-at-platformModel OBJECT IDENTIFIER ::= {tcpa-attribute 5}
tcpa-at-platformVersion OBJECT IDENTIFIER ::= {tcpa-attribute 6}
tcpa-at-componentManufacturer OBJECT IDENTIFIER ::= {tcpa-attribute 7}
tcpa-at-componentModel OBJECT IDENTIFIER ::= {tcpa-attribute 8}
tcpa-at-componentVersion OBJECT IDENTIFIER ::= {tcpa-attribute 9}
tcpa-at-securityQualities OBJECT IDENTIFIER ::= {tcpa-attribute 10}
tcpa-at-tpmProtectionProfile OBJECT IDENTIFIER ::= {tcpa-attribute 11}
tcpa-at-tpmSecurityTarget OBJECT IDENTIFIER ::= {tcpa-attribute 12}
tcpa-at-foundationProtectionProfile OBJECT IDENTIFIER ::= {tcpa-attribute 13}
tcpa-at-foundationSecurityTarget OBJECT IDENTIFIER ::= {tcpa-attribute 14}
tcpa-at-tpmIdLabel OBJECT IDENTIFIER ::= {tcpa-attribute 15}
tcpa-prt-tpmIdProtocol OBJECT IDENTIFIER ::= {tcpa-protocol 1}

TCPA Main Specification Page 270

Version 1.0 25 January, 2001

10. Conformance Criteria

10.1 Base Levels for Interoperability

Start of informative comment:

The TCPA Support Services (TSS) will interoperate with other TSS devices and applications external to
the TPM. The functions that interoperate are identity creation, challenge and response; backup; and
maintenance. The interoperability must be at a level so that an application or other TSS can, without
modification, send messages and receive replies. The messaging system may be either real-time or
store-and-forward.

The use of TPM and TSS is intentional in the conformance section. The difference between the two is the
level of protection that is available for the functions or data. The TPM provides tight control over execution
and data access, but for the TSS there is no such requirement.

To achieve maximum flexibility the TSS supports a negotiation protocol. This protocol allows the
requestor to determine which features are available and the parameter settings that are appropriate for
each of them.

There is no guarantee of interoperability when support for additional algorithms and protocols is provided.

End of informative comment.

The algorithms and protocols in this specification are the REQUIRED algorithms and protocols. A TPM
subsystem MAY support additional algorithms and protocols. When this specification specifies the use of
the TSS for a feature, an implementation MAY place the feature in the TPM.

10.2 Conformance Specification Sheet

Start of informative comment:

This section provides a quick listing of the protocols and algorithms that a TPM must support. For details
review the section specific to the function in question.

Algorithms

• RSA, SHA-1, HMAC

Operations

• Random number generation

• Key generation

• Digital signatures (signing and verification)

• Protected storage

• Auditing

• Volatile memory

• Non-volatile memory

End of informative comment.

10.3 Protocol Negotiation and Algorithm Agility

Start of informative comment:

The TPM requires interoperability between devices when sending migration packets, identities and
backup issues. For these reasons the specification mandates algorithms and message formats.

TCPA Main Specification Page 271

Version 1.0 25 January, 2001

A related issue is that the set of algorithms picked by the specification may not meet the needs of a
certain community. The specification therefore allows different algorithms to be in use. For instance, when
creating an identity the creator can specify the algorithm and algorithm parameters for the identity. The
specification requires that the TPM support the RSA algorithm, however the TPM may support additional
algorithms and parameters.

Any challenger can request the list of algorithms and parameters that a TPM supports using the
TPM_GetCapability command.

A challenger does not negotiate algorithms and parameters rather the challenger requests a specific type
and the TPM either executes the command or fails the request.

End of informative comment.

The TPM MUST support the base algorithms specified for each operation. The TPM MAY support
additional algorithms and parameters.

The TPM manufacturer MUST include in the TPM credential all algorithms that the TPM supports.

The TSS manufacturer MUST include in the platform credential all algorithms that the TSS supports.

10.4 Cryptographic Algorithms and Protocols

Start of informative comment:

The algorithms and protocols are the minimum that the TSS and TPM must support. Additional algorithms
and protocols may be available to the TPM and TSS. All algorithms and protocols available in the TPM
and TSS must be included in the list in the TPM and platform credential.

End of informative comment.

10.4.1 Asymmetric

Start of informative comment:

The asymmetric algorithm provides both digital signatures and wrapping of keys. The requirement of the
TPM to support RSA allows the specification of one algorithm for both purposes.

TPM devices that implement different algorithms may have different algorithms perform the signing and
wrapping.

There is no requirement concerning how the RSA algorithm is to be implemented. TPM manufacturers
may use Chinese Remainder Theorem (CRT) implementations or any other method. Designers should
review P1363 for guidance on RSA implementations.

End of informative comment.

• The TPM MUST support RSA.

• The TPM MUST use the RSA algorithm for encryption and digital signatures.

• The TPM MUST support key sizes of 512, 1024, and 2048 bits. The TPM MAY support other key
sizes. The minimum RECOMMENDED key size is 1024 bits.

• The RSA public exponent MUST be e, where e = 216+1.

TPM devices that use CRT as the RSA implementation MUST provide protection and detection of failures
during the CRT process to avoid attacks on the private key.

The TPM MAY implement other asymmetric algorithms such as DSA or elliptic curve. These algorithms
may be in use for wrapping, signatures, and other operations. There is no guarantee that these keys can
migrate to other TPM devices or that other TPM devices will accept signatures from these additional
algorithms.

TCPA Main Specification Page 272

Version 1.0 25 January, 2001

10.4.2 Symmetric

Start of informative comment:

The encryption done by the TPM does not require a symmetric algorithm. The TSS must provide the bulk
encryption support. The assumption is that the TSS has larger bandwidth and more MIPS to accomplish
this type of encryption.

There is no requirement that a TPM NOT support a symmetric algorithm. A TPM may implement a
symmetric algorithm.

The requirement to support both DES and 3DES is because some localities have restrictions on the
import or export of 3DES and the TSS should not have an export or import limitation. DES should be in
use only when the 3DES is not allowable.

End of informative comment.

The TSS MUST support 3DES. 3DES SHOULD be the symmetric algorithm of choice. The key size of
3DES MUST be 196 bits (three 64-bit keys). 3DES MUST be run in encrypt-decrypt-encrypt (EDE) mode.
The TSS MUST provide detection of weak 3DES keys.

The TSS MUST support DES. The key size for DES MUST be 64 bits (56 bits plus parity). The TSS
MUST provide detection of weak DES keys.

The TSS SHOULD have support for AES when it becomes available.

A TPM MUST support the storage of at least 256-bit symmetric keys.

10.4.3 Hashing

The TPM MUST support the SHA-1 hash algorithm as defined by FIPS-181. The output of SHA-1 is 160
bits and all areas that expect a hash value are REQUIRED to support the full 160 bits.

10.4.4 Signature Operations

The TPM MUST use the RSA algorithm for signature operations.

The TPM MAY use other asymmetric algorithms for signatures; however, there is no requirement that any
other TPM device either accept or verify those signatures.

The TPM MUST use P1363 for the format and design of the signature output.

TCPA Main Specification Page 273

Version 1.0 25 January, 2001

10.4.5 Creating a PCR composite hash

The definition specifies the operation necessary to create TCPA_COMPOSITE_HASH.

Action

The hashing MUST be done using the SHA-1 algorithm.

The input must be a valid TCPA_PCR_SELECTION structure.

The process creates a TCPA_PCR_COMPOSITE structure from the TCPA_PCR_SELECTION structure
and the PCR values to be hashed. If constructed by the TPM the values MUST come from the current
PCR registers indicated by the PCR indices in the TCPA_PCR_SELECTION structure.

The process then computes a SHA-1 digest of the TCPA_PCR_COMPOSITE structure.

The output is the SHA-1 digest just computed.

10.4.6 Using Secret Keys

Informative comments:

Secret keys can be loaded into a TPM, but preferably are generated inside the TPM.

A TPM generated key must not be used as a secret key if it has already been exposed.

Secret keys obtained from blobs must not be exposed outside the TPM.

End of informative comments.

A secret key is a key that is a private asymmetric key or a symmetric key.

Data SHOULD NOT be used as a secret key by a TCPA protected capability unless that data has been
extant only in a shielded location.

A key generated by a TCPA protected capability SHALL NOT be used as a secret key unless that key
has been extant only in a shielded location.

A secret key obtained by a TCPA protected capability from a Protected Storage blob SHALL be extant
only in a shielded location.

TCPA Main Specification Page 274

Version 1.0 25 January, 2001

10.5 Random Number Generator (RNG)

Start of informative comment:

The Random Number Generator (RNG) is the source of randomness in the TPM. The TPM uses these
random values for nonces, key generation and randomness in signatures.

The understanding is that this definition of the RNG, depending on implementation, could be a Pseudo
Random Number Generator (PRNG). On those devices that have a hardware source of entropy, this
implementation may be an RNG and not a PRNG so there is no need for to keep track of which is which;
that is, the specification will always use RNG.

End of informative comment.

The RNG for the TPM will consist of the following components:

• Entropy source and collector

• State register

• Mixing function

The RNG capability is a TPM-protected capability with no access control.

The RNG output may or may not be shielded data. When the data is for internal use by the TPM (e.g.,
asymmetric key generation) the data MUST be held in a shielded location. When the data is for use by
the TSS or another external caller, the data is not shielded.

10.5.1 Entropy Source and Collector

Start of informative comment:

The entropy source is the process or processes that provide entropy. These types of sources could
include noise, clock variations, air movement, and other types of events.

The entropy collector is the process that collects the entropy, removes bias, and smoothes the output.
The difference between the collector and the mixing function (described in section 10.6.3, “Mixing
Function”) is that the collector may have special code to handle any bias or skewing of the raw entropy
data. For instance, if the entropy source has a bias of creating 60 percent 1s and only 40 percent 0s, then
the collector design takes that bias into account before sending the information to the state register.

End of informative comment.

The entropy source MUST provide entropy to the state register in a manner that provides entropy that is
not visible to an outside process. For compliance purposes, the entropy source MAY be in the TSS and
not the TPM; however, attention MUST be paid to the reporting mechanism.

The entropy source MUST provide the information only to the state register. The entropy source may
provide information that has a bias, so the entropy collector must remove the bias before updating the
state register. The bias removal could use the mixing function or a function specifically designed to
handle the bias of the entropy source. The entropy source can be a single device (such as hardware
noise) or a combination of events (such as disk timings). It is the responsibility of the entropy collector to
update the state register whenever the collector has additional entropy.

10.5.2 State Register

Start of informative comment:

The state register implementation may use two registers: a non-volatile register and a volatile register.
The TPM loads the volatile register from the non-volatile register on startup. Each subsequent change to
the state register from either the entropy source or the mixing function affects the volatile state register.
The TPM saves the current value of the volatile state register to the non-volatile register on TPM power-

TCPA Main Specification Page 275

Version 1.0 25 January, 2001

down. The TPM may update the non-volatile register at any other time. The reasons for using two
registers are

• to handle an implementation in which the non-volatile register is in a flash device and

• to avoid overuse of the flash, as the number of writes to a flash device are limited.

End of informative comment.

The state register is in a TPM-shielded location. The state register MUST be non-volatile. The update
function to the state register is a TPM-protected capability. The primary input to the update function
SHOULD be the entropy collector.

If the current value of the state register is unknown, calls made to the update function with known data
MUST NOT result in the state register ending up in a state that an attacker could know. This requirement
implies that the addition of known data MUST NOT result in a decrease in the entropy of the state
register.

The TPM MUST NOT export the state register.

10.5.3 Mixing Function

Start of informative comment:

The mixing function takes the state register and produces some output.

The mixing function is a TPM-protected capability. The mixing function takes the state register and
creates the output of the RNG. The output MUST conform to the requirements for PRNG from FIPS 140-
1.

End of informative comment.

Each use of the mixing function MUST affect the state register. This requirement is to affect the volatile
register and does not need to affect the non-volatile state register.

10.5.4 RNG Reset

Start of informative comment:

The resetting of the RNG occurs at least in response to a loss of power to the device.

These tests prove only that the RNG is still operating properly; they do not prove how much entropy is in
the state register. This is why the self-test checks only after the load of previous state and may occur
before the addition of more entropy.

End of informative comment.

The RNG MUST NOT output any bits after a system reset until the following occurs:

• The entropy collector performs an update on the state register. This does not include the adding of
the previous state but requires at least one bit of entropy.

• The mixing function performs a self-test. This self-test MUST occur after the loading of the previous
state. It MAY occur before the entropy collector performs the first update.

10.6 Key Generation

Start of informative comment:

Key generation is algorithm-specific. The requirements for a given algorithm come from the preceding
section or sections specific to it.

There are no timing requirements on the length of time that a TPM must meet when performing key
generation.

End of informative comment.

TCPA Main Specification Page 276

Version 1.0 25 January, 2001

10.6.1 Asymmetric

The TPM MUST generate asymmetric key pairs. The generate function is a protected capability and the
private key is held in a shielded location. The implementation of the generate function MUST be in
accordance with P1363.

The prime-number testing for the RSA algorithm MUST use the definitions of P1363. If additional
asymmetric algorithms are available, they MUST use the definitions from P1363 for the underlying basis
of the asymmetric key (for example, elliptic curve fitting).

10.6.2 Symmetric

The TSS MUST generate a symmetric key by taking the next n bits from the TPM RNG.

The TSS SHOULD provide any processing of a symmetric key. Processing is an algorithm-specific
operation and implementation is left to the designer.

10.6.3 Nonce Creation

The creation of all nonce values MUST use the next n bits from the TPM RNG.

10.7 Auditing

Start of informative comment:

The TPM and TSS must be able to report a log of events. The log uses the same paradigm as the PCRs,
the TPM keeps a PCR value that extends for each log event, and the TSS maintains the log entries for
Challengers to review.

The TPM generates an audit event and the TSS creates the log. The protection of the log is a TSS
requirement. The TSS is responsible for collecting each audit log event.

The TPM uses a PCR and extends it for each audit event. The TSS can use the PCR to create a log that
shows any attempt to tamper with it.

The TPM Owner can select the operations that will generate an audit event.

End of informative comment.

The TPM MUST be able to generate audit events for all TCPA protected capabilities.

The TPM Owner MUST be able to select the functions that will generate an audit event at any time.

The TPM MUST provide a PCR to store and log the audit events. The TPM MUST allow for the reporting
of the current audit log PCR value. The value that the TPM adds to the TPM audit PCR MUST be the
TCPA_AUDIT_EVENT structure.

The TSS MUST provide a log of all TPM-generated events. The TPM will generate the event and the TSS
will fill in the event details. The TPM SHALL provide as much detail as it has available; however, the TSS
MUST fill in all remaining details for the audit event. For instance, the audit event will require a data and
time stamp on the event. There is no requirement for a clock function in the TPM, so the date and time
would come normally from the TSS.

The TPM MAY generate audit events for other functions and activities not on this list.

10.8 Self-Tests

The TPM MUST provide startup self-tests. The TPM MUST provide mechanisms to allow the self-tests to
be run on demand. The response from the self-tests is pass or fail.

The TPM MUST complete the startup self-tests in a manner and timeliness that allows the TPM to be of
use to the BIOS during the collection of integrity metrics. The TPM MUST complete the required checks

TCPA Main Specification Page 277

Version 1.0 25 January, 2001

before a given feature is in use. This requirement allows the TPM to test the integrity metric storage and
allow its use while simultaneously continuing to test the signature engine.

There are two sections of startup self-tests: required and recommended. The recommended tests are not
a requirement due to timing constraints. The TPM manufacturer should perform as many tests as possible
in the time constraints.

The TPM MUST report the tests that it performs.

The TPM MUST provide a mechanism to allow for any self-test to execute on request by any Challenger.
The testing can be the entire suite of tests or an individual test.

The TPM MUST provide for testing of some operations during each execution of the operation.

10.8.1 Required Self-Tests

The TPM MUST check the following:

• RNG functionality. This test follows FIPS 140-1, which checks the functioning of an RNG.

• Reading and extending the integrity registers. The self-test for the integrity registers will leave the
integrity registers in a known state.

• Endorsement key pair integrity. This requirement specifies that the TPM will verify that the
endorsement key pair can sign and verify a known value. This test also tests the RSA sign and verify
engine.

• The integrity of the protected capabilities of the TPM. This means that the TPM must ensure that its
“microcode” has not changed, and not that a test must be run on each function.

• Any tamper-resistance markers. The tests on the tamper-resistance or tamper-evident markers are
under programmable control. There is no requirement to check tamper-evident tape or the status of
epoxy surrounding the case.

10.8.2 Recommended Checks

The TPM SHOULD check the following:

• The hash functionality. This check will hash a known value and compare it to an expected result.
There is no requirement to accept external data to perform the check. The TPM MAY support a test
using external data.

• Any symmetric algorithms. This check will use known data with a random key to encrypt and decrypt
the data.

• Any additional asymmetric algorithms. This check will use known data to encrypt and decrypt.

• The key-wrapping mechanism. The TPM should wrap and unwrap a key. The TPM MUST NOT use
the endorsement key pair for this test.

10.8.3 Self-Test Failure

When the TPM detects a failure during any self-test, the part experiencing the failure MUST enter a shut-
down mode. This shut-down mode will allow only the following operation to occur:

• Update. The update function must be available to recover the addition of invalid microcode.

All other operations will return the error code TCPA_FAILEDSELFTEST.

10.9 Object Reuse

The TPM MUST destroy and erase all temporal objects when the TPM finishes processing the object. The
use of an object can be a long-term operation. For instance, the TPM could load an identity key and keep
the key in memory while performing multiple challenge and response operations. There is no requirement

TCPA Main Specification Page 278

Version 1.0 25 January, 2001

to unload the object after each operation, but there is a requirement that the object be properly disposed
of when all operations are complete.

When an internal TPM process uses objects, no information regarding the object may be available to
outside processes. The TPM MUST enforce access control to all objects carrying sensitive information.

10.10 Maintenance

Start of informative comment:

The maintenance feature is a vendor-specific feature, and its implementation is vendor-specific. The
implementation must, however, meet the minimum requirements as defined in section 7.2.14 so that one
implementation of the maintenance feature does not provide a hole into the TCPA system.

There is no requirement that the maintenance feature be available, but if it is implemented, then the
requirements must be met.

The maintenance feature described in the specification is an example only, and not the only mechanism
that a manufacturer could implement that meets these requirements.

End of informative comment.

The maintenance feature MUST ensure that the information can be on only one TPM at a time.
Maintenance MUST ensure that at no time the process will expose a shielded location. Maintenance
MUST require the active participation of the Owner.

10.11 Backup

Start of informative comment:

The purpose of backup is to take a key and move it to another TPM. The backup mechanism must move
only migratable information.

The blob that the backup feature creates must be usable by any other TPM. This requirement holds only
for keys and data that are usable by all TPMs. For example, there is no requirement that a 768-bit RSA
key be acceptable by all TPM devices. The migration of information has a guarantee only when the key
uses one of the required sizes.

End of informative comment.

The TPM MUST support the backup feature. The TPM MUST create a blob of migratable data that is
readable by any other TPM. A receiving TPM MAY reject a backup blob if the underlying information is a
non-standard size or algorithm.

10.12 Strength of Function

Start of informative comment:

The common criteria defines Strength of Function (SOF) as a qualification of a Target of Evaluation (TOE)
security function expressing the minimum efforts assumed necessary to defeat its expected security
behavior by directly attacking its underlying security mechanisms.

Here are some definitions for the common SOF criteria:

• SOF-basic. A level of the TOE SOF where analysis shows that the function provides adequate
protection against casual breach of TOE security by attackers possessing a low attack potential.

• SOF-medium. A level of the TOE SOF where analysis shows that the function provides adequate
protection against straightforward or intentional breach of TOE security by attackers possessing a
moderate attack potential

TCPA Main Specification Page 279

Version 1.0 25 January, 2001

• SOF-high. A level of the TOE SOF where analysis shows that the function provides adequate
protection against a deliberately planned or organized breach of TOE security by attackers
possessing a high attack potential

There is no single overall SOF definition; instead, each operation needs a review of what the SOF should
be. The Protection Profile will specify the SOF for each operation, command, function, and so on.. For
instance, the SOF for protection of the endorsement key pair will be SOF-high, but the SOF for tamper
resistance will be SOF-basic.

The testing lab will determine if a specific security target implementation of the Protection Profile meets
the SOF level. This specification will not specify definition of the SOF as this metric is an ever-changing
value. That is, what was high a few years ago is now not even at the basic level. It is certainly possible
that a device that receives certification will not pass given changes in the SOF definition in the future.

End of informative comment.

The TPM MUST report the SOF values to a Challenger and the SOF values MUST be part of the TPM
endorsement certificate and the platform conformance certificate.

10.13 Protection Profile
Start of informative comment:

The TCPA specification will use two Protection Profiles to judge conformance with the specification. They
are the TCPA Trusted Platform Module Protection Profile (TCPA-TPMPP) and the TCPA Trusted Platform
Conection Protection Profile (TCPA-TPCPP).

The TPMPP provides the evaluation of a TPM. The security targets that reference this Protection Profile
will provide the mechanism for platform manufacturers to judge between different TPM providers. The
TOE for the TPMPP covers just the TPM and does not include any TSS functionality.

The TPCPP provides the evaluation of the connection of the TPM to the platform and the connection of
the RMT to the platform and TPM. The security targets that reference this Protection Profile will provide
the mechanism for platform purchasers the ability to judge between different platforms. The TOE for the
TPCPP will include the TPMPP.

The Protection Profiles are separate documents and refer back to this specification. The following
discussion of the Protection Profiles is for reference only, and the actual text of the profiles supersedes
any comments in this section.

The basis of the Protection Profiles is the attack tree that shows the threats against the TPM and TSS.
The attack tree is a separate document that is an inherent part of this specification. The basic design
point for the attack tree is that the TPM should be resistant to all software attacks and somewhat resistant
to hardware attacks.

End of informative comment.

10.14 Compliance to Specification

Start of informative comment:

The TCPA does not evaluate compliance to this specification directly. The evaluation of compliance to the
specification comes from the manufacturer creating a security target that meets the Protection Profile
(either TPMPP or TPSPP).

After the TCPA creates a Protection Profile, each manufacturer has the option of creating a security
target to evaluate against the Protection Profile. This security target is implementation-specific and could
cover either a machine or an application using the profile.

The evaluation of a security target provides assurances to the buying public that the manufacturer has
created a secure interoperable system.

End of informative comment.

TCPA Main Specification Page 280

Version 1.0 25 January, 2001

10.15 Field Upgrade

Start of informative comment:

A TPM, once in the field, may have need to update the protected capabilities. This command, which is
optional, provides the mechanism to perform the update.

End of informative comment.

The TPM SHOULD have provisions for upgrading the subsystem after shipment from the manufacturer. If
provided the mechanism MUST follow the requirement from section 8.15 .

10.16 Physical Presence or Access

Start of informative comment:

This specification includes commands which require "local" or "physical" presence at the platform before
the command will operate. The intention is that these commands cannot be activated without
authorization provided by direct interaction with a person

It must be possible to control a TPM. Such controls include those to clear an existing Owner from the
TPM, temporarily deactivate a TPM, and temporarily disable a TPM. Some such commands must work
without conventional authorization information, because they will be required when the necessary
authorization information is unavailable (because there is no Owner or because the authorization
information has been lost). Such commands are subject to "denial of service" attacks, and ideally require
other forms of authorization

Some commands are therefore prescribed to require physical presence (of a person) at the platform
before the command will operate. Such commands could be authorised with or by purely physical or
electrical methods, or with or by physical presence detected using software when the platform is in a
restricted state. Such authorization is difficult or impossible to reproduce by rogue software, depending on
the exact method of implementation. The actual method of implementation of such authorization is the
choice of the manufacturer. The overall strength of such authorization is reflected in the "security target"
of the platform.

In a PC, such authorization might be implemented using direct electrical connections from a switch, or
using software during the POST

End of informative comment.

The requirement for physical presence MUST be met by the platform manufacturer using some physical
mechanism.

TCPA Main Specification Page 281

Version 1.0 25 January, 2001

10.17 Other Specifications

Start of informative comment:

There are other security specifications and this section describes them and what level of compliance the
TCPA may have with them.

• Rainbow Series: The Rainbow Series of specifications is being phased out by Protection Profiles.
There is no requirement that the TCPA be Orange Book compatible.

• ITSEC: ITSEC is a European standard that is being phased out by Protection Profiles. There is no
requirement that TCPA use any ITSEC specifications.

• FIPS: The FIPS 140 specification covers cryptographic modules and the hardware implementation of
these modules. In many ways, Protection Profiles and FIPS overlap. Some of the FIPS 140
requirements are specified in this specification; however, compliance with the entire specification is
not required.

End of informative comment.

Individual manufacturers MAY do the additional design and testing to obtain a FIPS 140 certification, but
there is no requirement that a TCPA device obtain this testing.

Specifications or standards included in this specification

• PKCS#1: RSA Data Security, Inc. Public-Key Cryptography Standards (PKCS) Version 2.0

o RSAES_OAEP (2.0)

o RSASSA-PKCS1-v1_5

• ITU-T Recommendation X.509 | ISO/IEC 9594-8: “Information technology - Open Systems
Interconnection – The Directory: Public-key and attribute certificate frameworks”, 4th Edition.

• DES/3DES: Data Encryption Standard FIPS 46-3 (DES) : National Institute of Standards and
Technology

• ASN.1: Abstract Syntax Notation One : ITU-T Recommendations X.680-X.683

• FIPS 140-1: Federal Information Processing Standards Publication 140-1 “Security Requirements
for Cryptographic Modules”

• BER: Basic Encoding Rules : ITU-T Recommendation X.690-691 (1997)

• ISO 15408 (Common Criteria)

• SHA-1: Secure Hash Algorithm : NIST FIPS PUB 180-1, “Secure Hash Standard,” : National
Institute of Standards and Technology

• RFC 2104 (HMAC)

TCPA Main Specification Page 282

Version 1.0 25 January, 2001

11. Appendix A: Glossary
3DES

DES using a key of a size that is 3X the size that of a DES key. See DES.

Blob

Opaque data of fixed or variable size. The meaning and interpretation of the data is outside the scope
and context of the Subsystem.

Challenger

An entity that requests and has the ability to interpret integrity metrics from a Subsystem.

Conformance Credential

A credential that states the conformance to the TCPA specification of: the TPM; the method of
incorporation of the TPM into the platform; the RTM; and the method of incorporation of the RTM into the
platform.

Denial-of-service attack

A attack on a system (or subsystem) which has no affect on information except to prevent its use.

DES

Symmetric key encryption using a key size of 56 bits defined by NIST as FIPS 46-3. Reference
http://csrc.ncsl.nist.gov/cryptval/des.htm.

Endorsement Credential

A credential containing a public key (the endorsement public key) that was generated by a genuine TPM.

Endorsement Key

A term used ambiguously, depending on context, to mean a pair of keys, or the public key of that pair, or
the private key of that pair; an asymmetric key pair generated by a TPM that is used as proof that a TPM
is a genuine TPM; the public endorsement key (PUBEK); the private endorsement key (PRIVEK).

Identity Credential

A credential issued by a Privacy CA that provides an identity for the TPM.

Integrity metric(s)

Values that are the results of measurements on the integrity of the platform.

Man-in-the-middle attack

An attack by an entity intercepting communications between two others without their knowledge and by
intercepting that communication is able to obtain or modify the information between them.

Migratable

A key which may be transported outside the specific TPM.

Non-Migratable

A key which cannot be transported outside a specific TPM; a key that is (statistically) unique to a
particular TPM.

Non-Volatile

Storage location or memory that retain their values after power-off or a TPM_Init function.

Owner

The entity that owns the platform in which a TPM is installed. Since there is, by definition, a one-to-one
relationship between the TPM and the platform, the Owner is also the Owner of the TPM. The Owner of

TCPA Main Specification Page 283

Version 1.0 25 January, 2001

the platform is not necessarily the “user” of the platform (e.g., in a corporation, the Owner of the platform
might be the IT department while the user is an employee.) The Owner has administration rights over the
TPM.

PKI Identity Protocol

The protocol used to insert anonymous identities into the TPM.

Platform Credential

A credential that states that a specific platform contains a genuine TCPA Subsystem.

POST

POST refers to the Power On Self Test performed by a PC.

Protection Profile

A document that defines all attacks and how they are resisted by the TPM, the RTM, and the methods by
which they are incorporated into the platform.

Privacy CA

An entity that issues an Identity Credential for a TPM based on trust in the entities that vouch for the TPM
via the Endorsement Credential, the Conformance Credential, and the Platform Credential.

Private Endorsement Key (PRIVEK)

The private key of the key pair that proves that a TPM is a genuine TPM. The PRIVEK is (statistically)
unique to only one TPM.

Public Endorsement Key (PUBEK)

A public key that proves that a TPM is a genuine TPM. The PUBEK is (statistically) unique to only one
TPM.

Random number generator (RNG)

A pseudo-random number generator that must be initialized with unpredictable data and provides,
“random” numbers on demand.

Root of Trust for Measurement (RTM)

The point from which all trust in the measurement process is predicated.

Root of Trust for Reporting (RTR)

The point from which all trust in reporting of measured information is predicated.

Root of Trust for Storing (RTS)

The point from which all trust in Protected Storage is predicated.

RSA

An (asymmetric) encryption method using two keys: a private key and a public key. Reference:
http://www.rsa.com .

SHA-1

A NIST defined hashing algorithm producing a 160 bit result from an arbitrary sized source as specified in
FIPS 180-1. Reference: http://csrc.ncsl.nist.gov/cryptval/shs.html.

Storage Root Key (SRK)

The root key of a hierarchy of keys associated with a TPM; generated within a TPM; a non-migratable
key.

Subsystem

TCPA Main Specification Page 284

Version 1.0 25 January, 2001

The combination of the TSS and the TPM.

Support Services (TSS)

Services to support the TPM but which do not need the protection of the TPM. The same as Trusted
Platform Support Services.

TCPA-protected capability

 A function which is protected within the TPM, and has access to TPM secrets.

TPM Identity

One of the anonymous PKI identities belonging to a TPM; a TPM may have multiple identities.

TPM POST

TPM POST refers to the Power On Self Test performed by a TPM.

Trusted Platform Agent (TPA)

Trusted Platform Agent; the component within the platform that reports integrity metrics, logs, Validation
Data, etc. to a Challenger; outside the scope of this specification.

Trusted Platform Measurement Store (TPMS)

Storage locations within the Subsystem, which contain unprotected logs of measurement process.

Trusted Platform Module (TPM)

The set of functions and data that are common to all types of platform, which must be trustworthy if the
Subsystem is to be trustworthy; a logical definition in terms of protected capabilities and shielded
locations.

Trusted Platform Support Services (TSS)

The set of functions and data that are common to all types of platform, which are not required to be
trustworthy (and therefore do not need to be part of the TPM).

User

An entity that uses the platform in which a TPM is installed. The only rights that a User has over a TPM
are the rights given to the User by the Owner. These rights are expressed in the form of authorization
data, given by the Owner to the User, that permits access to entities protected by the TPM. The User of
the platform is not necessarily the “owner” of the platform (e.g., in a corporation, the owner of the platform
might be the IT department while the User is an employee). There can be multiple Users.

Validation Credential

A credential that states values of measurements that should be obtained when measuring a particular
part of the platform when the part is functioning as expected.

Validation Data

Data inside a Validation Credential; the values that the integrity measurements should produce when the
part of a platform described by the Validation Credential is working correctly.

Validation Entity

An entity that issues a Validation Certificate for a component; the manufacturer of that component; an
agent of the manufacturer of that component.

Volatile

Storage locations or memory that are either set to a predefined value (e.g.,zero) or have values that are
undefined upon completion of a power-on or TPM_Init function.

