Trusted Computing

Platform Alliance
(TCPA)

Main Specification
Version 1.0

Copyright © 2000 Compag Computer Corporation, Hewlett-Packard Company, IBM Corporation,

Intel Corporation, Microsoft Corporation
All rights reserved.
DISCLAIMERS:

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION,
OR SAMPLE.

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.

COMPAQ, HP, IBM, INTEL, AND MICROSOFT, DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR
INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO THE USE OF THE INFORMATION IN
THIS SPECIFICATION AND TO THE IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION.
COMPAQ, HP, IBM, INTEL, AND MICROSOFT, DO NOT WARRANT OR REPRESENT THAT SUCH
IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

WITHOUT LIMITATION, COMPAQ, HP, IBM, INTEL, AND MICROSOFT DISCLAIM ALL LIABILITY FOR
COST OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF
USE, LOSS OF DATA OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL
DAMAGES, WHETHER UNDER CONTRACT, TORT, WARRANTY OR OTHERWISE, ARISING IN ANY
WAY OUT OF USE OR RELIANCE UPON THIS SPECIFICATION OR ANY INFORMATION HEREIN.

All product names are trademarks, registered trademarks, or service marks of their respective owners.

TCPA Main Specification Page ii

Acknowledgement

TCPA wishes to thank members of the PKI, PC Specific and Conformance Workgroup who contributed
expertise and text to this document. Thanks must be given to the members of the TCPA Technical
Committee who were Michael Angelo, Boris Balacheff, Josh Benaloh, David Challener, Dhruv Desai,
Paul England, David Grawrock, Bob Meinschein, Manny Novoa, Graeme Proudler, Jim Ward and Monty
Wiseman.

David Chan
Technical Committee Chair

Version 1.0 25 January, 2001

TCPA Main Specification

Page iii

Change History

Version Date Description

0.44 July 2000 Voted by members as appropriate for public release
with modifications.

0.90 August 2000 First version released to public.

0.91 October 26, 2000 Remove chapters 1 & 2. Complete reformat

0.92 4 November, 2000 Added new chapter for structures, updated
functions to match IDL, editing changes.

10RC1 28 November 2000 Incorporated comments cleaned up structures and
made ready for publication.

1.0RC2 11 December 2000 Incorporated changes from reflector.
Added new change authorization command.

1.0 RC4 10 Jan 2001 Incorporated changes and fixed up IDL

1.0 RC5 11 Jan 2001 PKCS#1 changes

Version 1.0 25 January, 2001

TCPA Main Specification Page v

2.

Table of Contents

0] 1= T (o TP 1

The Trusted Platform SUDSYSIEMcc.iiii e 2

P20 R [011 oo [FTod 1 o] o PP 2
P 2 = o o] 1= o) B I 1) SO PTPTRP 2
PG T (01 0= Te [10V @] 1= = 11 o g F= 5
2.3.1 Storage Of INtEGritY MetrCSttt e e e anas 5
2.3.2 Reporting of INtegrity MetIiCSiuu i e e e e e e e 5
2.4 Use of Keys Associated With TPM [deNtitieScvuiiiiiiiii e 6
P ST O V] o (oo =T a1 ToR @] o 1T = 11 [1S 7
2.6 OPLNG 10 USE @ TPM .. oiiiiiiiiiiiee ettt ettt e et e et 8
2.6.1 ENADIiNG OWNEISIID ...cciiiii ettt 9
2.6.2 ACHVALING @ TPM oot e 9
2.6.3 SeleCted OPEIALIONSceuuiiti ittt ettt e a e 10

[(01 1=Tex (o] o HA PPN 13

G 70 R [o1 oo [¥ex 1o o F PP 13
T I 1 =T | PP UPPTRIN 13
G 70 T (01 =Y 11 2P 14
G 2 e Y71 [T L= AN o o= 14
TSI 1 (o (oI 1 (= Tox £ T PP PR UPPTRPPN 14
SErUCIUIES AN DEFINES ...ttt et eens 15
41.1 ENANESS Of SITUCLUIES ...ttt et eens 15
4.1.2 BYLE PACKING -ttt ettt 15
O I = 101 16
4.2.1 BaASIC AALA 1Y DS .. ettt 16
4.2.2 Helper redefinitiONSiiii e 16
4.2.3 VENUOI SPECITIC ittt ettt 17
O B < (U] 1 g W oo o {2 PP 18
S 1 5 | PP PPTRIN 20
4.5 TCPA _VERSION. .. ittt ettt ettt e et e ettt e e et e e et aeean e eanaaes 21
4.6 T COP A DI G E ST ittt et e e ae 22
A7 TCPA_NONCE ...ttt et e e et e et et e e et e aa e ae 23
4.8 TP A AUTH D AT A ettt et e e et e et e et et e e ae 24
4.9 TCPA _PAYLOAD _TYPE .. ittt ettt e et e et e e e e 24
4.10 TCPA _INTERNAL_HDR ... ittt ettt e e e e e e e e et e e et r e e s e et e e enneeeens 25
4.11 LI N U] =1 S 26
4.11.1 TCPA_RSA PUBKEY ..ottt ettt e et e e e e e a e et e e et e e et e e et e e eanae e et e eenneeeens 26
4.12 IO N = =4 Y N 2 PP 27
4.13 LI = N S PP 28
4.14 TCPA_PCR_REGISTER ... ittt e e e e e e e aeens 29
4.15 TCOPA _PCR _EVENT Lttt ettt e e et et e et e e et e e eaaaeens 30
4.16 TCPA_AUDIT_EVENT SITUCTUIE ...ttt ittt e e e e e e e e ane e 32
4.17 STOTAGE STUCTUIES .vu ittt e e e et e et e e e e e e e e e e aneaees 33
4171 TCOPA _SEALED DA T A ittt ettt et et aeans 33
4.17.2 TCPA_PCR_SELECTION L.ouiiiiiiiiiieii ettt ettt e e e eeens 35
4.17.3 TCPA_PCR_COMPOSITE ...ttt et et e e eeens 36
I S O N A I 1 36
4075 TCPA ASYM HASH Lottt et e e e e e n e e e et e e aaeaeens 37
4.17.6 TCPA_STORE_ASYMEKEY ...ttt ettt e e e e e e e e e e e et s e e a e et e e eneeeens 38
4.17.7 TCPA_MIGRATE_ASYMEKEY ..ottt e e e e e et e et eeeaeeeens 41
4.17.8 TCPA_MAINTENANCE_ASYMKEY ...ttt e e e e 42
4.18 L1 = N S U I PSP 43
4.19 TCPA_CERTIFY_INFO SITUCIUIE ...cetuiitiieet ettt et e et e et e et e e e aeens 44
4.20 TCPA_QUOTE_INFO StIUCTUI ... iititiiiei ettt e e e e e e e e e e e aees 45
4.21 TCPA_KEY _INFO ...ttt et et e e et et e e et e e e eans 46

Version 1.0 25 January, 2001

TCPA Main Specification Page vi

4.22 = Vo TS {1 o (1 = 47
4.22.1 TCPA PERSISTENT_FLAGS SITUCIUMS. ... ciitiieii et iee e e ee e e e e e e e e naan e e eeeens 48
4.22.2 TCPA VOLATILE_FLAGS SITUCIUIuitieiiiie e et et e et e e e e e e een e naaneeaaneeeens 50

4.23 (O 1o [T 1= 51
4.23.1 Evidence of Subsystem ENAOIrSEMENtcoouiiiiiiiiiiie e 52
4.23.2 Evidence of Platform ENAOrSEMENTccuniiiii e eas 54
4.23.3 Evidence of Platform COoNfOrMAaNCE...........couiiiiiiii e 56
4.23.4 TCPA Validation Datal......c.uuiieuniieiiieiiiie et e et e et e et e et e e e et eeaeaeens 58
4.23.5 Evidence of Trusted Platform Module Identitycoooeiiiiiiiiii e, 59

4.24 TCPA_ALGORITHM_PARMS ...t et e e e eens 61

4.25 [0 1= 0101V (U o1 (1] = U 62
4.25.1 TCPA_IDENTITY _CONTENTS ittt ettt et e eeens 62
4.25.2 TCPA_SYMMETRIC_KEY ...ttt ettt e e e eeens 63
4.25.3 TCPA _IDENTITY _REQ .. iiitiiiiiiiiiet ettt e e e e et e e e e et e et e e e e e et s e et e e eanaeeaeneeenneeeens 64
4.25.4 TCPA_SYM _IDENTITY _REQ .. i iitiiiiiieiii ettt ee e e e e e et s e e e e e e e et s e e s eeanseaaaneeenneeeens 65
4.25.5 TCPA_ASYM_IDENTITY_REQ .. iitiiiiiieiiiet et e e e e e e e e e e e e e e e e n e et e e eneeeens 66
4.25.6 TCPA _ASYM _CA _CONTENT S ..ttt et e e e e e e e et e e eeeens 67
4.25.7 TCPA_SYM_CA ATTESTATION ..ottt et e e et e e e eens 68

4.26 TCPA_CHANGEAUTH_VALIDATE ..ottt et e e e e e eeens 69

4.27 TCPA_MIGRATIONKEYAUTH ..ot e aeens 70

4.28 TCPA_PROTOCOL_ID ..ttt et ettt e e e et e eeaeaeens 71

4.29 TCPA ENTITY T Y P et et e e e eens 72

4.30 TCPA ST ARTUPR T Y PE et et et eens 73

4.31 CoMMANA OFAINGIS ... et ettt e e et e e e e et e et e eeaeees 74

5. Authorization and OWNEISID ... couii e e e e et e e e an e eanns 76

L 0 O [0 o Yo 13 o oo 76

5.2 AUthONZAtioON PrOtOCOISciieeiii ettt et e e e e e e ean e ee 78
L R O 1B o 12 ox 1] o] (o] I PP PTPPIPPN 79
L I =/ 11 SN 81
5.2.3 Authorization using an O-AP SESSIONc.uuiiiiiiiiiiiii e 82
5.2.4 (@ ST Y e =S o] o 1o P 84
B 2 D TP M O S AP e et e e 87
5.2.6 Authorization using an OS-AP SESSIONccuiiiuiiiiiii e 88

5.3 TPM_Terminate HaNAIEccoiiiiiiii e e e e e e e e e e e ens 91

5.4 ADIP — Creating @ NeW ENtitY.......cuuiiiiii e e e e e e e e e e e enaeens 92

5.5 ADCP - Changing AUthorization Data..............oeuuiiieiiieiiciec e e e e e enaeees 94

L T I = 1Y/ 3 = T Vo 1= AN U o o 95

5.7 Asymmetric Authorization Change ProtoCOl............oovuuiiiiiiiiii e 97
571 TPM_ChangeAUtNASYMSIANciitiieieiiii ettt et e e e ea e 97
5.7.2 TPM_ChangeAuthASYMEINISN e 100

5.8 AULNOMZALION DALA.. ... e et ettt 102

LTS A (o] o [of 1 P PP PP 102

5.10 AULhOZatioN HAaNGIEo e e e e 103

5.11 HMAQC CalCUIBLION ...ttt e e et e et e e e e et e et e eanaaes 104
5.11.1 HMAQC LONQG PAramMETEIS ..uuiiuiiiiiiiiii et e e e e e e e aa et et et e aaeanaas 105

5.12 LI Y @ 1T =T £ o T o 106
L 2 R I Y B 1= 1 =T @ Y] 1= £ T o 107

6. Integrity Collection and REPOIINGveeiii e e e e e e eees 109

G2 R [o1 1o T [0 Tox i [o T H O PP P PP 109

6.2 Platform Configuration REQISIEISciiiiiiiiiiiiie e 110
6.2.1 FOormat and PrOPEITIESuiiii ittt ettt e 110
6.2.2 L1 U= 1742 AL I 110
6.2.3 AULNONZEA PCRS ... e 110

6.3 Operations Supporting Integrity Collection and RepPOrtingccovevvviiiiiiiiniiiiieeieeenenen 111
L0 700 R I = b4 (=T o o [111
6.3.2 TPM _PCIREAAcuiiiii e e 112

Version 1.0 25 January, 2001

TCPA Main Specification Page vii

7.

8.

B.3.3 TPM _QUOTE ..ottt e e et 113
6.3.4 TSS_LOGEXIENUEVENTuiitieiiiee et et eea s 115
6.3.5 TSS_GEEXIENAEVENTouiiiiii e et 117
6.3.6 TSS_GEetEXIENUEVENTLOQY - cetuiiiieeii ettt ettt eeens 119
6.3.7 TSS_DISPOSEEVENTLOQ . .civieitiieiiie ettt ettt e et e e 120
6.3.8 TPM _DIrWIEAULN ... e e e e e et e e e een s 121
LSRC e T I o Y 114 =T (o [122

[(0] LYo 1= To S (o1 - Vo[- PP 123

4% R [o1 1o T [0 Tox i o T o TP 125
% N R O £ - = 13 (=] 1 02 T TP 125
7.1.2 [NCE TS 1 (0] 1= Vo [PP 127
A Y = U To F= o oV U T 1T o T 127
T.2.1 TP S .. 128
%72 U Y/ 14 T | 131
072 T 151 T = 1T 134
%72 S W Y/ o1 213 T 136
7.2.5 TPM_CreateWrapKeYccuiiiiiiiiii e 137
7.2.6 TPM_CreateWrapKeYTOPCI 139
7.2.7 TS S W AP Y ..t e et 141
7.2.8 TS S AP Y T OP Cr . et e e e e e et e e e e e aeanaas 143
7 T W = Y I 0T Vo | - VP 145
2 O B W =V B 1= U] o] 1=V P 147
7.2.11 TPM_CreateMigrationBIObccouiiiiii e 148
7.2.12 TPM_MigrateMigrationBIODc.oiiniii e 150
7.2.13 TPM_LoadMigrationBlobc..viuiii e 152
7.2.14 TPM_AUthOrzeMigratioNKEYoiiiiiiiiiii e et 154
7.3 TPM Optional FUNCtioNS: MaINtENANCE.iieiiiiiieii e 155
7.3.1 TPM_CreateMaintenNanCeATCNIVE e ees 157
7.3.2 TPM_LoadMainteNanCEAICRIVEc.ui e e 159
7.3.3 TPM_KilIMaiNtENANCEFEALUIE. ... e e ea e ees 161
Cryptographic and Miscellaneous FUNCLONSc.iiuiiiiiiiiice e eas 162

S 70 R 101 i £o o (U T3 o] o [SRR 162
S T A o F- TS I @ =T = 11 1PN 162
8.2.1 TSS_HASNAIL .. et et et 163
8.2.2 TSS HaASKINIt ... i e e e 164

S T T IS T o - T 1 U o = 1 = 165
8.2.4 TSS_HASHFINGL ..o et 166

S TR T o 1Y @ o] o 4= 1 o L 167
S0 00 N I8 1 T 1Y X O A | 168
S0 T 8 1S T o 1Y X O 1o 169
8.3.3 TSS HMACUPAALE. ... ittt e e et e et e e e e et e e ean e eennas 170
R T B I IS R o 1Y N O i o - | 171

S I = YA @ =T 1o £ o P 172
S o R W =V B 1= 1117/ = P 172
T ST Y/ 4] 4= o Tl = o] Y/ o] 1 o o PPN 174
8.5.1 TS ENCIYP AN L. e e 175

S T T 83 =t o o/ o 4o T R 176
8.5.3 TSS ENCIYPIUPUALE .. et e e 177
8.5.4 TSS ENCIYPIFINGL. e 178
SRR T 81 T I 1= o Y/ o1 Y 179
ST S T 5 3 Y B =) Y/ o 4 180
8.5.7 TSS_DECIYPIUPUALE ..ottt ettt et et 181
8.5.8 TSS_DECIYPLFINGL. ..ccuiieiieite e et 182
8.6 Digital SIGNATUIES ... ceuiiiiiieiie ettt ettt 183
S 20 R I Y o | o I 183
8.6.2 TSS VErfYSIgNAtUI . .couiiiiiii e e e e e e e e e e aeeas 184

Version 1.0 25 January, 2001

TCPA Main Specification Page viii

8.7 RANAOM NUMDEIS ...ttt et et e et et et et e e e enn s 185
8.7.1 TPM_GERANUOM. ..cctiiiit ettt ettt et e e e e e eea s 186
8.7.2 TPM_SHIRANAOM .. ittt et e eea s 187

o T T T | = 188
8.8.1 TPM_SEITESIFUIl ...t e e e e e e e e e een s 189
8.8.2 TPM_SEITESISTANMUD.tuiirieit ettt et eea s 190
8.8.3 LI\ O 1 11 S T=] L =T PR 191

8.9 Reset and Clear OPEIatiONScuuiii it e e e e et e e e et e et e e e e e e e eaaes 192
8.9.1 LI Y =] PR 193
N T I = [o 1 PP 194
8.9.3 TPIM S AVESTALE .. eutiiii et 195
8.9.4 LI S = U £ U o PRSPPI 196
ST TN T I = |V B @ 111 1Y O 1 197
8.9.6 TPM_DiISableOWNEICIEAceeieiii ettt eea s 198
8.9.7 TPM_FOICECICAN ... ettt et 199
8.9.8 TPM_DiSAblEFOICECIEA ... et e e e e e ees 200

8.10 The GetCapability COMMANTSoouuiiiiiiii e e 201
8.10.1 TPM_GetCapabilitycuuiiieiieiiiei e e 202
8.10.2 TSS_GetCapabilityc.uiiiiiiie e 204
8.10.3 TPM_GetCapabhilitySIgNediiriiiii e 205

8.11 AUAIt COMMEBNTS ...ttt e et et ettt e et e e et e e et e e et e ean e eeneae 207
8.11.1 TPM_GetAUdIIEVENT ..o e ea e ens 208
S 00 I 2 I TS T €= AW o 114 o o 209
8.11.3 TPM_SetOrdinalAUdItSIAtUSuiie i e e e e e e e e ees 210
8.11.4 TPM_GetOrdiNalAUdItSTAtUSceu it e e e e e e e e enaeees 211

8.12 ENabling OWNEISNIP ... et 212
8.12.1 TPM_SetOWNEIINSIAIl ... et 213

8.13 ENADING 8 TPM ..ot 214
8.13.1 TPM_OWNErSEeDISADIEt 215
8.13.2 TPM_PhySicalDisableooiiii e 216
8.13.3 TPM_PhYSICAIENGDIEot 217

8.14 o 117 111 To = N I 1 PR 218
8.14.1 TPM_PhysicalSetDeactiVated............ciuiiiiiiii e 219
8.14.2 TPM_SetTempDeacCtiVated.........c..iiuuiii it e e e e e eas 220

8.15 LI Y/ 1= (o 18] o o=V [221

8.16 TPM Internal RSA Operations on Arbitrarily Sized Data.........c.c.oevvieiiiiiiniiiiii e 223
8.16.1 TPM_INterNal _ENCIYPL .ot e e et e e e e eeas 224
8.16.2 TPM_INErNAI_SIGNATUIE .. .ceuiiiiiei ittt et e e e 226

8.17 TPM_SEtREAINECHION ...ttt et ettt e et e e e e 227

9. SUDSYSIEM CredentialSt et 229

S 0 R [011 o o {1 Tod o] o PP 229

S B 1 0 To (0] £57=T o 4 [=] o | PP 229
9.2.1 TPM_CreateENdorsementKeYPaircc.iuiiiiiiii e 230
9.2.2 TPM_REAUPUDEKo 232
9.2.3 TPM_DisablePUbeKREaAdccouiiiiii e 233
9.2.4 TPM_OWNErREAUPUDEKcuiiiiiitiii e e e e e e ens 234

9.3 Generating a Trusted Platform Module [dentity..........coooveiiiiiiii e 235
Lo T 70 R I = |V B Y == [[T o] 2 238
9.3.2 TSS_CollateldentityREQUESTcuu it e e e e e e aeens 241
9.3.3 Contacting @ PrIVACY CA ..ot 244
9.3.4 TPM_ACHVAIETPMIAENTILY .vvueiei s e et e e e e e e e et s e ean e een s 245
9.3.5 TSS_RECOVEITPMIAENTILYuiirieiiieeei et et 246

9.4 Instantiation of Data When Contacting a Privacy CAcooieiiiiiiiiiiicei e 248
9.4.1 From OWNEr t0 PriVACY CA ... ittt 248
9.4.2 From PrivaCy CA 10 OWN e ...ttt ettt e e e e e e e e e e e e aaeaees 249

9.5 Instantiation of Credentials as CertifiCatesco.uviiiiiiiiii e 251

Version 1.0 25 January, 2001

TCPA Main Specification Page ix

9.5.1 Instantiation of TPM_ENDORSEMENT_CREDENTIALSiiiiiiiiiiiiiiieeiiec e 252
9.5.2 Instantiation of Platform_credentialS....... ..o 255
9.5.3 Instantiation of TPM_CONFORMANCE_CREDENTIALcctviiiiiiiiii e 258
9.5.4 Instantiation of Validation CertifiCatecoooiiiiiiiiii e 261
9.5.5 Instantiation of TPM_IDENTITY_CREDENTIAL......ciuuiiiiiiiiiiiee e 264
9.5.6 ASN.L DEFINITIONS ...eniiiiiieit ettt e et e et e e et e e e e ea e eas 268
10. (0fe] a1 (0T g o T 1o lot I O 11 =T 4T DT 270
10.1 Base Levels for Interoperabilityc.veiniiiiii 270
10.2 Conformance Specification ShEetoiiiiiii i 270
10.3 Protocol Negotiation and Algorithm Agility.........oovu i 270
10.4 Cryptographic Algorithms and ProtOCOIScccuiiiiiiiii e 271
0t N V] o] = 1 [271
O 3V o1 41 1 T 272
01 T - T o1V 272
10.4.4 SIGNALUIE OPEIALIONScieuiiiiieiit ettt ettt e e et ettt e e et e et e e eenns 272
10.4.5 Creating @ PCR COMPOSIte NASN........oiiiiiiii e 273
10.4.6 USING SECIEE KEYS .. ittt ettt ettt et et e e enas 273
10.5 Random Number Generator (RNG).........couuiiiiiiiiiiiie et 274
10.5.1 ENtropy Source and CoOllECIONuiuiiiiie e 274
O A = L (T =T 1] (] P 274
O T |V 1T o 0 T o) P 275
L10.5:4 RING RESEL ...ttt ettt et e et et et et e a e eans 275
10.6 (=Y C 1= =T = o 275
O G 00 N V0 1 =« o 276
O G 3V o 2 1] o 276
OG0 T Lo g o] =T @ == 1 o] o 276
10.7 W o {14 oo 276
10.8 7= IS (P 276
10.8.1 ReEQUINEA SeIET SIS ittt ettt e 277
10.8.2 RecOmMMENEd ChECKS. et e e e e e aeas 277
10.8.3 Self-TeSt FAIIUIE . ..eeee et e e e eas 277
10.9 (O] oTT=Tod B = LT U Y= P 277
O 00 O V= 11 1 T g = U o PSPPI 278
50 I = 7 V] (1 o 278
10.12 Strength Of FUNCHON e e e e e e e e e e e aeees 278
10.13 ProteCtion Profile oo 279
10.14 Compliance t0 SPECIICALION.iit it e 279
10.15 FHEld UPGrade........oeeiiiiieiii ettt et ettt et e 280
10.16 PhYSICAl PreSENCE OF ACCESSuiiitieiiieeei ettt ettt et e e e e e eeens 280
10.17 Other SPECITICALIONSttt et e et e e eeens 281
11, APPENAIX Al GIOSSAIY ... ettt et e e e et et 282

Version 1.0 25 January, 2001

TCPA Main Specification Page 1

1. Forward

This document is an industry specification that enables trust in computing platforms in general.

This specification defines a trusted Subsystem that is an integral part of each platform, and provides
functions that can be used by enhanced operating systems and applications. The Subsystem employs
cryptographic methods when establishing trust, and while this does not in itself convert a platform into a
secure computing environment, it is a significant step in that direction.

Standardization is necessary so that the security and cryptographic community can assess the
mechanisms involved, and so that customers can understand and trust the effectiveness of new features.
Manufacturers will compete in the marketplace by installing Subsystems with varying capabilities and cost
points. The Subsystem itself will have basic functions that maintain privacy, yet support the identity and
authentication of entities such as the platform, the user, and other entities. The Subsystem will have other
capabilities to protect data and verify certain operational aspects of the platform. It can be a separate
device or devices, or it can be integrated into some existing component or components provided the
implementation meets the requirements of this specification. This is necessary to achieve the
fundamental goal of ubiquity.

Please note a very important distinction between different sections of text throughout this document.
Beginning in chapter 2, “The Trusted Platform Subsystem,” you will encounter two distinctive kinds of text:
informative comment and normative statements. Because most of the text in this specification will be of
the kind normative statements, the authors have informally defined it as the default and, as such, have
specifically called out text of the kind informative comment. They have done this by flagging the beginning
and end of each informative comment and highlighting its text in gray. This means that unless text is
specifically marked as of the kind informative comment, you can consider it of the kind normative
statements.

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD
NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in the chapters 210 normative statements are to be
interpreted as described in [RFC-2119].

For example:

This is the first paragraph of 1-n paragraphs containing text of the kind informative comment ...
This is the second paragraph of text of the kind informative comment ...

This is the nth paragraph of text of the kind informative comment ...

To understand the TCPA specification the user must read the specification. (This use of MUST does not
require any action).

This is the first paragraph of one or more paragraphs (and/or sections) containing the text of te kind
normative statements ...

To understand the TCPA specification the user MUST read the specification. (This use of MUST indicates
a keyword usage and requires an action).

Version 1.0 25 January, 2001

TCPA Main Specification Page 2

2. The Trusted Platform Subsystem

2.1 Introduction

Start of informative comment:

The TCPA Subsystem design is to provide useful trust and security capabilities while minimizing the
number of functions that must be trusted. This arrangement is necessary to make the Subsystem useful
while remaining low in cost and can result in unusual features as compared with a conventional crypto co-
processor.

End of informative comment.

2.2 Roots of Trust

Start of informative comment:

This section introduces the architectural aspects of a Trusted Platform that enable the collection and
reporting of integrity metrics.

Among other things, a Trusted Platform enables an entity to determine the state of the software
environment in that platform and to SEAL data to a particular software environment in that platform.

The entity deduces whether the state of the computing environment in that platform is acceptable and
performs some transaction with that platform. If that transaction involves sensitive data that must be
stored on the platform, the entity can ensure that that data is held in a confidential format unless the state
of the computing environment in that platform is acceptable to the entity.

To enable this, a Trusted Platform provides information to enable the entity to deduce the software
environment in a Trusted Platform. That information is reliably measured and reported to the entity. At the
same time, a Trusted Platform provides a means to encrypt cryptographic keys and to state the software
environment that must be in place before the keys can be decrypted.

Both these functions require integrity metrics. These metrics consist of data reflecting the integrity of the
software state of the Trusted Platform. Both functions require two roots of trust in a platform. One is
known as the “root of trust for measuring integrity metrics,” and the other is known as

storing and reporting integrity metrics.”

The root of trust for measuring integrity metrics is likely to be different for different types of platforms
because the metrics and their measurements will depend on the type of platform. The root of trust for
storing and reporting integrity metrics enables integrity metrics to be reliably stored and reported and can
have the same capabilities, irrespective of the type of platform.

A “trusted measurement root” measures certain platform characteristics, logs the measurement data in a
measurement store, and stores the final result in a TPM (which contains the root of trust for storing and
reporting integrity metrics). The trusted measurement root might also measure the characteristics of
another measurement agent before passing control to the second agent. That second agent might repeat
the process of measuring platform characteristics, storing measurement data and the final result, passing
control to a third measurement agent, and so on.

When an integrity challenge is received, the Trusted Platform Agent gathers the following:
the final results from the TPM,
the log of the measurement data from the Trusted Platform Measurement Store, and

TCPA Validation Data that states the values that the measurements should produce in a platform that
is working correctly.

The Trusted Platform Agent then sends this measurement data to the Challenger. The Challenger uses
the data to check that it is consistent with the final results and then compares the data @nd perhaps the
final results) with the TCPA Validation Data. This comparison enables the Challenger to deduce the

Version 1.0 25 January, 2001

TCPA Main Specification Page 3

software state of the Trusted Platform and consequently decide whether the Challenger is satisfied to
trust the platform for the intended purpose.

Once the Challenger has determined that the Trusted Platform can be trusted, the Challenger can use the
TPM to store keys alongside stated values of integrity metrics, such that the TPM will not release the keys
unless the current measured values of integrity metric match the stated values of integrity metric.

Both roots of trust, plus certain other capabilities for other purposes, must be implemented in ways that
enable confidence in their correct operation in all circumstances of interest. A Challenger must be able to
trust the roots and these capabilities. The implementation of the root of trust for measurement will typically
vary depending on the type of platform (for example, PC, server, or phone). The TPM is defined as the
set of all trusted capabilities apart from the root of trust for measurement, because these are independent
of the type of platform. The whole Subsystem, therefore, typically consists of a root of trust for measuring
integrity metrics, plus a TPM, plus other functions (the Support Services, or SS) that do not have to be
trusted to function properly. Those other functions must still operate properly if the Subsystem is to
operate properly, but any misbehavior of the SS can be detected. Any misbehavior of the functions in a
root, or in the TPM, on the other hand, cannot be detected.

It is not the intention of this specification to specify the method of construction of either the Subsystem or
the TPM, provided that they meet the requirements of this specification. The following diagram is an
indication of the functional elements of a typical TPM.

End of informative comment.

TPM contents

Asymmetric key generation Non-volatile memory
) . Keys
Asymmetric encryption co-processor Private endor sement (2048b)
StorageRootK ey (2048b)
Computing engine Hmac M aintenance (2048b)
TPME-identity-key (2048b)
Power detection Hash RNG

Authorisation (160b)

Owner
TPM -owner memory entity-owner memory
Flags
Nonce Nonce KillM aintenance
Auth handle Auth handle DisableOwner Reset
Digest Digest TPM StaticDisable
Ephemeral secret Ephemeral secret

RNG-state-register (variable)
memory PCRs(DWORDSs) Data-integrity-register (DWORD)
MAC-secret (variable)

Parent key (2048b) PlatformConfigurationRegister0
Child key (2048b)
Scratch pad

------- Programs (variable, large)
PlatformConfigurationRegister7

A Trusted Platform SHALL include the following:
at least one root of trust for measuring integrity metrics,
exactly one root of trust for storing and reporting integrity metrics,

at least one Trusted Platform Measurement Store,

Version 1.0 25 January, 2001

TCPA Main Specification Page 4

at least one TCPA Validation Data, and

exactly one Trusted Platform Agent.

The Endorsement Key is transitively bound to the Platform via the TPM as follows:

1. An Endorsement Key is bound to one and only one TPM (i.e., there is a one to one correspondence
between an Endorsement Key and a TPM.)

2. A TPM is bound to one and only one Platform. (i.e., there is a one to one correspondence between a
TPM and a Platform.)

3. Therefore, an Endorsement Key is bound to a Platform. (i.e., there is a one to one correspondence
between an Endorsement Key and a Platform.)

An instantiation of the root of trust for measuring integrity metrics, while acting as the root of trust for
measuring integrity metrics, SHALL do the following:

execute no programs other than those intended by the entity that vouches for the root of trust for
measuring integrity metrics,

be resistant to the forms of software attack and to the forms of physical attack implied by the
platform’s Protection Profile,

accurately measure at least one integrity metric that indicates the software environment of a platform,

accurately record measured integrity metrics to a root of trust for storing and reporting integrity
metrics, and

accurately ecord details of the process of measuring all its integrity metrics to a Trusted Platform
Measurement Store.

An instantiation of the root of trust for storing and reporting integrity metrics SHALL do the following:

be resistant to all forms of software attack and to the forms of physical attack implied by the platform’s
Protection Profile,

accept recording of measured integrity metrics, and

supply an accurate digest of all sequences of presented integrity metrics.

An instantiation of a Trusted Platform Measurement Store SHOULD do the following:

accurately accept, store and supply details of at least one process of measuring an integrity metric.

An instantiation of the repository for TCPA Validation Data SHOULD do the following:

accurately store and supply a predicted value of at least one integrity metric.

An instantiation of the Trusted Platform Agent SHOULD do the following:

obtain and supply an accurate report from the root of trust for storing and reporting integrity metrics of
at least one sequence d integrity metrics in a form that prevents misrepresentation of that sequence
or its source,

obtain and supply an accurate report from a Trusted Platform Measurement Store of at least one set
of details describing the measurement of an integrity metric, and

Version 1.0 25 January, 2001

TCPA Main Specification Page 5

2.3 Integrity Operations

2.3.1 Storage of Integrity Metrics

Start of informative comment:

This section introduces the way that sequences of values of integrity metrics are stored in a TPM. This
section does not describe the way that logs of the measurement process are stored in the Trusted
Platform Measurement Store.

Each entry in the log inside the Trusted Platform Measurement Store contains a description of a
measured entity plus an appropriate integrity metric that has been recorded inside a TPM. The log can be
used to reproduce the value of each sequence of integrity metrics inside the TPM. If the log and the TPM
are consistent and the TPM is trustworthy, the log can be trusted. If the values derived from the log and
the values reported by the TPM are the same, the log is presumed to be an accurate record of the steps
involved in building the software environment of the target platform. Consequently, the descriptions in the
log of the measured entities represent the actual entities that contributed to the software environment
inside the platform. Any difference between the values derived from the log and the values reported by
the TPM indicate an undesirable inconsistency in the state of the target platform.

The mechanism used by the TPM to store sequences of values of integrity metrics is the subject of this
section. This method must be reproduced when verifying the consistency of the values derived from the
log and the values reported by the TPM.

A large number of integrity metrics may be measured in a platform, and a particular integrity metric may
change with time and a new value may need to be stored. It is difficult to authenticate the source of
measurement of integrity metrics, and as a result a new value of an integrity metric cannot be permitted to
simply overwrite an existing value. (A rogue could erase an existing value that indicates subversion and
replace it with a benign value.) Thus, if values of integrity metrics are individually stored, and updates of
integrity metrics must be individually stored, t is difficult to place an upper bound on the size of memory
that is required to store integrity metrics.

The TCPA solution is not to store individual integrity metrics. Instead, a Trusted Platform provides a way
to store sequences of integrity metrics. Values of integrity metrics cannot be “stored” inside a TPM, and
must instead be appended to a sequence. The states of all sequences inside a TPM are set to a known
value at power-up. Each new integrity metric must be appended to a sequence and must modify the value
of that sequence. The actual TCPA method is to concatenate the value of a new integrity metric with the
existing value of the sequence, compute a digest of the concatenation, and use that digest as the new
representation of the sequence.

This method enables one or more sequences to represent an arbitrary number of integrity metrics and
their updates. The fewer the number of sequences, the more difficult it becomes to interpret the meaning
of the value of a sequence. The greater the number of sequences, the more costly it becomes to provide
storage. A particular implementation must make a trade-off between cost and difficulty of interpretation.

End of informative comment.
Integrity metrics that are presented to a TPM SHALL be stored inside that TPM in a way that prevents
misrepresentation of the presented values or of the sequence in which they were presented.

2.3.2 Reporting of Integrity Metrics
Start of informative comment:
This section introduces the way that sequences of integrity metrics are reported by a TPM.

An entity seeking to know the state of the computing environment inside a Trusted Platform depends
critically on the values of the integrity metrics. The integrity metrics enable an entity to determine the
consistency of the measurement information and compare the actual and expected states of the platform.

Version 1.0 25 January, 2001

TCPA Main Specification Page 6

It follows, then, that the integrity metrics must be reported by a trusted mechanism. That trusted
mechanism is the TPM (which includes the root of trust for storing and reporting integrity metrics). The
TPM proclaims its trustworthiness by signing data, using one of its identities and conventional
cryptographic techniques. The signature key is known only to the TPM and is the private key of a key
pair. The corresponding public key is an identity key, since it is a cryptographic value by which the TPM is
known. Together, the signature key and the identity key are part of an identity of the TPM.

A person or (more probably) an organization vouches for the TPM by attesting to a TPM identity. Before
agreeing to provide attestation, the organization checks the construction credentials of the TPM, the
design credentials of the platform that incorporates the TPM, and the construction credentials of the
platform that incorporates the TPM. When the TPM reports the values of the sequences of integrity
metrics that it has stored, the TPM signs those values using a TPM identity. When an entity receives
signed data that originated in a TPM, the entity can verify that the data has not been changed in transit.
The entity can also check that the data was signed by a TPM identity and that an organization known to
the entity has attested to the TPM identity.

The TPM uses a conventional method to defeat replay attacks. That is, the entity provides a nonce that
the TPM concatenates with the sequence values, before signing the values, and the signed result is
returned by the Trusted Platform Agent to the entity. The actual capability provided by the TPM may be
considered to be an “integrity signature.” The TPM accepts arbitrary data, concatenates that arbitrary
data with the sequence values, and signs the concatenated data using the signature key of a TPM
identity. When providing sequence values, that arbitrary data is simply a nonce that was provided by the
challenging entity. The signed data proves that the sequence values have been supplied by a “live” TPM.

At other times, the challenging entity may wish to obtain specific information from a Trusted Platform.
Then, the arbitrary data could be a digest of the specific information. The signed data proves the state of
the computing environment inside the Trusted Platform at the time that the specific information was
supplied.

End of informative comment.

Sequences of integrity metrics reported by the TPM SHALL be reported by that TPM in a way that
prevents misrepresentation of the sequences and prevents misrepresentation of the reporting TPM

2.4 Use of Keys Associated with TPM Identities

Start of informative comment:

The private (signature) key associated with a TPM identity must be used only for signatures. (It is poor
security practice to use the same asymmetric key for both signing and confidentiality.) If a TPM identity
requires the use of confidentiality, the TPM must create a separate confidentiality key. A TPM identity can
indicate that a confidentiality key “belongs” to a TPM identity by signing the confidentiality key.

The private (signature) keys associated with TPM identities must be used only for special operations and
must be indelibly stored with flags that mark them as belonging to TPM identities. Currently, the special
operations are signing sequence values, signing other keys that were generated inside the TPM, and
signing data when obtaining attestation to the identity.

A TPM must use private keys associated with TPM identities only for these special purposes, and must
refuse to use private keys associated with TPM identities for other purposes. Otherwise, a rogue may
construct data (outside the TPM) that has the same format as that used by the TPM for these special
operations, and cause a TPM to sign that data using a private key associated with TPM identity. Such
data would be misinterpreted as genuine data constructed by the TPM for those special purposes, and
could subvert the trust in those special purposes.

If the TPM prevents such a masquerade, a third party can always be certain that data (signed by a private
key associated with a TPM identity) was actually generated by a TPM for one of those special operations.
To avoid any possibility of confusion over which legitimate capability is using a TPM identity, any
capability that signs using a TPM identity will perform the signature over data that includes the ordinal
(label) of the command.

Version 1.0 25 January, 2001

TCPA Main Specification Page 7

It MUST be possible to reliably distinguish between the private key of a TPM identity and other keys.

A key that is distinguished as the private key of a TPM identity SHALL NOT be used except for
generating a digital signature value when the data being signed includes an accurate indication of the
capability being executed. A TPM SHALL NOT use a key that is distinguished as the private key of a TPM
identity except when signing on behalf of a TPM identity during the part of a TCPA “protected capability”
whose specification requires the signature of a TPM identity.

When signing on behalf of a TPM identity during the part of a TCPA protected capability whose
specification requires the signature of a TPM identity, a TPM SHALL NOT use a key other than one that
is distinguished as the private key of a TPM identity.

2.5 Cryptographic Operations

Version 1.0 25 January, 2001

TCPA Main Specification Page 8

The untrusted part of the Subsystem must include symmetric encryption functionality, but does not
include an RNG. The TSS may also include duplicate asymmetric key generation and asymmetric
encryption capabilities depending on the usefulness of TCPA protected capabilities to the TSS.

The Random Number Generator consists of a state-machine that accepts and mixes unpredictable data
and a post-processor that is a one-way function (such as a hash algorithm). This architecture is chosen to
provide a good source of random data without requiring that the TPM include a genuine source of
unpredictable data (which may be expensive).

The state-machine has non-volatile state, is initialized with unpredictable data before delivery to a
customer, and can at any time accept further (unpredictable) data. Such data may be provided by
hardware (from thermal noise, for example), or by software (monitoring keyboard strokes, for example).
Some such unpredictable data must be inserted every time that a platform boots. Naturally, a hardware
source is likely to supply data at a higher baud rate than a software source. That “further data” is mixed
into the existing state of the machine and as a result improves the unpredictability of the state of the
state-machine. Neither the Owner of the TPM nor the manufacturer of the TPM can deduce the state of
the state-machine. The post-processor is used to “condense” the output of the state-machine into data
that has sufficient and uniform entropy. (The one-way function will use more bits of input data than it
produces as output.)

End of informative comment.

2.6 Optingtousea TPM

Start of informative comment:
It is necessary to provide features that activate a TPM. This is for reasons of privacy.

A TPM is necessarily activated by a reset. This, however, causes the TPM to discard any existing secrets,
and puts the TPM into its virgin state, waiting for an Owner. It leaves the TPM vulnerable to ownership by
anyone who knows the PUBEK of the TPM and can get a “take ownership” command to the TPM. To fail
safe, the true Owner would need to take ownership as soon as possible after a TPM has been reset. If
desired, the true Owner could then withhold the authorization information that is necessary to use the
TPM. Since a TPM can have only one Owner, this prevents any use of the TPM until the true Owner
decides to use it.

It is therefore desirable to provide methods that deactivate and activate a TPM without destroying existing
secrets. Then the Owner of the TPM (or a user) may deactivate the TPM in order to prevent inadvertent
use of the TPM, and later reactivate the TPM in order to use current secrets. It is also desirable to provide
methods that activate and deactivate the process of taking ownership, in case the true Owner does not
wish to take ownership (at least, not yet).

The TCPA specification defines a set of capabilities to enable/disable a TPM, activate/deactivate a TPM,
and enable/disable the process of taking ownership of the TPM.

The overall effect of the disabling capabilities is that a disabled TPM does little of value, apart from
keeping accurate records of integrity metrics and acknowledging that the TPM exists. A disabled TPM is,
therefore, effectively “off”.

The overall effect of the deactivating capabilities is that an inactive TPM does nothing, apart from keeping
accurate records of integrity metrics, acknowledging that the TPM exists, and permitting the process of
installing an owner in the TPM.

There are obviously many combinations of the particular states of TPM enabled/disabled, TPM
activel/inactive, install-owner enabled/disabled. It may be that some suppliers will choose to supply a
virgin TPM that is enabled, active, and with “install owner” enabled, because that is what is required by
their customer. At the other extreme, if a virgin TPM is supplied in the disabled and inactive state, with
“take ownership” disabled, three steps are required in order to activate the TPM. One possible activation
sequence would be:

1. The prospective Owner should enable the TPM.

Version 1.0 25 January, 2001

TCPA Main Specification

End of informative comment.

2.6.1 Enabling Ownership

2.6.2 Activating a TPM

Version 1.0 25 January, 2001

TCPA Main Specification Page 10

2.6.3 Selected operations

Version 1.0 25 January, 2001

TCPA Main Specification Page 11

Version 1.0 25 January, 2001

TCPA Main Specification Page 12

Version 1.0 25 January, 2001

TCPA Main Specification Page 13

3. Protection

3.1 Introduction
Start of informative comment:

The Protection Profile in the Conformance part of the specification defines the threats that are resisted by
a platform. This section, “Protection,” describes the properties of selected capabilities and selected data
locations within a platform that has a Protection Profile and has not been modified by physical means.

This section introduces the concept of protected capabilities and the concept of shielded locations for
data. Every definition of a TCPA capability states whether it is a protected capability. Data definitions
state whether the data must be held in shielded locations.

A protected capability is one whose correct operation is necessary in order for the operation of the
Subsystem to be trusted.

A shielded location is an area where data is protected against interference and prying, independent of
its form.

This specification uses the concept of protected capabilities so as to distinguish those Subsystem
capabilities that must be trustworthy. Trust in the Subsystem depends critically on the protected
capabilities. Subsystem capabilities that are not protected capabilities must (of course) work properly if
the Subsystem is to function properly.

This specification uses the concept of shielded locations, rather than the concept of “shielded data.” While
the concept of shielded data is intuitive, it is extraordinarily difficult to define because of the imprecise
meaning of the word “data.” For example, consider data that is produced in a safe location and then
moved into ordinary storage. It is the same data in both locations, but in one it is shielded data and in the
other it is not. Also, data may not always exist in the same form. For example, it may exist as vulnerable
plaintext, but also may sometimes be transformed into a logically protected form. This data continues to
exist, but doesn't always need to be shielded data - the vulnerable form needs to be shielded data, but
the logically protected form does not. If a specific form of data requires protection against interference or
prying, it is therefore necessary to say “if the data-D exists, it must exist only in a shielded location.” A
more concise expression is “the data-D must be extant only in a shielded location.”

Hence if trust in the Subsystem depends critically on access to certain data, that data should be extant
only in a shielded location and accessible only to protected capabilities. When not in use, such data could
be erased after conversion (using a protected capability) into another data structure. Unless the other
data structure was defined as one that must be held in a shielded location, it need not be held in a
shielded location.

End of informative comment.

3.2 Threat

Start of informative comment:

This section, “Threat,” defines the scope of the threats that must be considered when considering
whether a platform facilitates subversion of capabilities and data in a platform.

The design and implementation of a platform determines the extent to which the platform facilitates
subversion of capabilities and data within that platform. It is necessary to define the attacks that must be
resisted by TCPA-shielded locations and TCPA-protected capabilities in that platform.

The TPM Protection Profile defines all attacks that are resisted by the TPM. These attacks must be
considered when determining whether the integrity of TCPA-protected capabilities and data in TCPA-
shielded locations can be damaged. These attacks must be considered when determining whether there
is a backdoor method of obtaining access to TCPA-protected capabilities and data in TCPA-shielded
locations. These attacks must be considered when determining whether TCPA-protected capabilities
have undesirable side effects.

Version 1.0 25 January, 2001

TCPA Main Specification Page 14

For the purposes of the “Protection” section of the specification: the threats that MUST be considered
when determining whether the platform facilitates subversion of TCPA-protected capabilities or data in
TCPA-shielded locations SHALL include the methods inherent in physical attacks that should fail if the
platform complies with its protection profile, and SHALL include all methods that require execution of
instructions in a computing engine in the platform.

3.3 Integrity

A platform SHALL NOT facilitate the alteration of TCPA-protected capabilities or data in TCPA-shielded
locations, except by TCPA-protected capabilities.

3.4 Privileged Access

A platform SHALL NOT facilitate the disclosure or the exposure of data in TCPA-shielded locations,
except to TCPA-protected capabilities.

3.5 Side effects

The implementation of a TCPA-protected capability in a platform SHALL NOT facilitate the disclosure or
the exposure of data in TCPA-shielded locations except by means unavoidably inherent in the TCPA
definition.

Version 1.0 25 January, 2001

TCPA Main Specification Page 15

4. Structures and Defines

4.1.1 Endness of Structures

Each structure MUST use big endian bit ordering, which follows the Internet standard and requires that
the low-order bit appear to the far right of a word, buffer, wire format, or other area and the high-order bit
appear to the far left.

4.1.2 Byte Packing
All structures MUST be packed on a byte boundary.

Version 1.0 25 January, 2001

TCPA Main Specification Page 16

4.2 Defines

Start of informative comment:
The defines are found in tcpa_defines.h.

End of informative comment.

4.2.1 Basic datatypes

Parameters
Typedef Name Description
unsi gned char BYTE Basic byte used to transmit all character fields.
unsi gned char BOCL TRUE/FALSE field. TRUE = 0x01, FALSE = 0x00
unsi gned short Ul NT16 16 bit field. The definition in different architectures may
need to specify 16 bits instead of the short definition
unsi gned | ong Ul NT32 32 hit field. The definition in different architectures may
need to specify 32 bits instead of the long definition
TRUE 0x01
FALSE 0x00

4.2.2 Helper redefinitions

The following definitions are to make the IDL definitions more explicit and easier to read.

Parameters

Typedef Name Description

Ul NT32 TCPA_PCRI NDEX Index to a PCR register

Ul NT32 TCPA_DI RI NDEX Index to a DIR register

Ul NT32 TCPA_KEYHANDLE Handle to a loaded key

Ul NT32 TCPA_AUTHHANDLE Handle to an authorization session

Ul NT32 TSS HASHHANDLE Handle to a hash session

Ul NT32 TSS_ HVACHHANDLE Handle to a HMAC session

Ul NT32 TCPA_ENCHANDLE Handle to a encryption/decryption session
Ul NT32 TCPA_EVENTTYPE Type of PCR event. See 4.15

Ul NT32 TCPA_ COMIVAND CODE The command ordinal. See 4.29

Ul NT32 TCPA _KEY_SLOT The slot where a key is held. 0 Based

Ul NT16 TCPA_PROTOCOL_I D The protocol in use. See 4.28

HRESULT TCPA_RESULT The return code from a function

BYTE TCPA_AUTH_DATA_USAGE When is authorization required for an entity

Version 1.0 25 January, 2001

TCPA Main Specification Page 17

4.2.3 Vendor specific

For all items that can specify an individual algorithm, protocol or item the specification allows for vendor
specific selections. The mechanism to specify a vendor specific mechanism is to set the high bit of the
identifier on.

The following defines allow for the quick specification of a vendor specific item.

Parameters

Name Value

TCPA Vendor _Speci fic32 0x80000000
TCPA _Vendor _Specificl6 0x8000
TCPA _Vendor _Specific8 0x80

Version 1.0 25 January, 2001

TCPA Main Specification

4.3

Start of informative comment:

Return codes

Page 18

All functions return a standard set of return values. These are the TCPA specific return codes (the values

of TCPA_RESULT).

HRESULT is a basic type of IDL RPC function calls. Basing the return codes on these values allows for
the inclusion of the return code in the HMAC calculation when the TPM responds to a function.

End of informative comment.

Parameters

Name Value Description

TCPA BASE 0x0 The start of TCPA return codes

TCPA_SUCCESS TCPA_BASE Successful completion of the operation

TCPA_AUTHFAI L TCPA_BASE + 1 Authentication failed

TCPA_BADI NDEX TCPA_BASE + 2 The index to a PCR, DIR or other register is
incorrect

TCPA BAD PARAMETER TCPA_BASE + 3 One or more parameter is bad

TCPA_BUFSI ZE TCPA_BASE + 4 The size specified in MaxSize is not large
enough to hold the data structure. If this error is
returned, *Size is still set to the buffer size
required.

TCPA_CLEAR_DI SABLED TCPA_BASE + 5 The clear disable flag is set and all clear
operations now require physical access

TCPA_DEACTI VATED TCPA_BASE 6 The TPM is deactivated

TCPA_DI SABLED TCPA_BASE 7 The TPM is disabled

TCPA_DI SABLED_CMD TCPA_BASE + 8 The target command has been disabled

TCPA _FAI L TCPA_BASE + 9 The operation failed

TCPA_| NACTI VE TCPA_BASE + 10 The TPM is inactive

TCPA_| NSTALL_DI SABLED | TCPA_BASE + 11 The ability to install an owner is disabled

TCPA | NVALI D_HANDLE TCPA BASE 12 The handle presented was invalid

TCPA_KEYNOTFOUND TCPA_BASE 13 The target key was not found

TCPA_KEYNOTLOADED TCPA_BASE 14 No backup key is loaded

TCPA_M GRATEFAI L TCPA_BASE + 15 Migration authorization failed

TCPA_NO PCR_| NFO TCPA_BASE + 16 A list of PCR values was not supplied

TCPA_NOSPACE TCPA_BASE 17 No room to load key.

TCPA_NOSRK TCPA_BASE 18 There is no SRK set

TCPA_NOTSEALED_ BLOB TCPA_BASE + 19 An encrypted blob is invalid or was not created
by this TPM

TCPA OANER_SET TCPA_BASE + 20 There is already an Owner

TCPA_RESOURCES TCPA_BASE 21 The event log is full

Version 1.0 25 January, 2001

TCPA Main Specification

Page 19

TCPA_SHORTRANDOM

TCPA_BASE + 22

A random string was too short

TCPA_SI ZE

TCPA_BASE + 23

The TPM does not have the space to perform
the operation.

TCPA_WRONGPCRVAL

TCPA_BASE + 25

The named PCR value does not match the
current PCR value.

TCPA_BUSY

TCPA_BASE +26

The TPM is too busy to respond to the
command

Version 1.0 25 January, 2001

TCPA Main Specification Page 20

4.4 |IDL

Parameters
Define Name Description
in Parameter is provided to function
out Parameter is returned from function
in out Parameter is both an input and output parameter
AUTH Blank marker to indicate the inclusion of the

parameter in the authorization calculation

Size is The size of a variable field

Version 1.0 25 January, 2001

TCPA Main Specification Page 21

4.5 TCPA_VERSION

For each structure in use externally by this specification, the following structure MUST be included.
IDL Definition
typedef struct tdTCPA VERSI ON

BYTE Mj or;
BYTE M nor;
BYTE RevMqj or;
BYTE RevM nor ;
} TCPA VERSI ON;

Parameters

Type Name Description

BYTE maj or This SHALL be the major version indicator. For version 1 this MUST be 0x01
BYTE m nor This SHALL be the minor version indicator. For version 1 this MUST be 0x00
BYTE RevMaj or This SHALL be the value of the TCPA_PERSISTENT_FLAGS.revMajor
BYTE RevM nor This SHALL be the value of the TCPA_PERSISTENT_FLAGS.revMinor

Descriptions

The version points to the version of the specification that defines the structure.

Version 1.0 25 January, 2001

TCPA Main Specification Page 22

4.6 TCPA_DIGEST

Start of informative comment:

The digest value reports the result of a hash operation. In Version 1.0 of this specification the hash
algorithm is SHA-1 with a resulting hash result being 160 bits.

End of informative comment.
Definition

typedef struct tdTCPA DI GEST{
BYTE di gest|[20];
} TCPA_ DI GEST;

Parameters

Type Name Description

BYTE di gest This SHALL be the actual digest information
Description

For the SHA-1 hash the digestSize parameter MUST be 20. For all TCPA hash operations, the required
algorithm is SHA-1.

For hash algorithms other than SHA-1 the digestSize parameter MUST indicate the block size of the
algorithm and MUST be 20 or greater.

Redefinitions

Typedef Name Description

TCPA _DI GEST TCPA_PCRVALUE The value inside of the PCR

TCPA DI GEST TCPA_BACKUP_AUTH This SHALL be the digest of the concatenation TPM
Owners authorization data and the public migration
key

TCPA DI GEST TCPA_COMPCSI TE_HASH This SHALL be the hash of a list of PCR indexes
and PCR values that a key or data is bound to (See
10.4.5 for details)

TCPA _DI GEST TCPA_DI RVALUE This SHALL be the value of a DIR register

Version 1.0 25 January, 2001

TCPA Main Specification Page 23

4.7 TCPA_NONCE

Definition

typedef struct tdTCPA_NONCE{
BYTE noncel 20];
} TCPA_NONCE;

Parameters

Type Name Description

BYTE nonce This SHALL be the 20 bytes of random data. When created by the TPM
the value MUST be the next 20 bytes from the RNG.

Version 1.0 25 January, 2001

TCPA Main Specification Page 24

4.8 TCPA_AUTHDATA

Start of informative comment:

The authorization data is the information that is saved or passed to provide proof of ownership of an
entity.

For version 1.0 this area is always 20 bytes.
End of informative comment.
Definition

typedef struct tdTCPA_ AUTHDATA{
BYTE dat a[20] ;
} TCPA_AUTHDATA,;

Parameters

Type Name Description

BYTE dat a The data SHALL be the 20 bytes of information. The Owner can select any
value for the data.

Descriptions

When sending authorization data to the TPM the TPM does not validate the decryption of the data. It is
the responsibility of the entity owner to validate that the authorization data was properly received by the
TPM. This could be done by immediately attempting to open an authorization session.

Redefinitions

Typedef Name Description

TCPA _AUTHDATA | TCPA SECRET A secret value used in the authorization process, this
value is not encrypted

TCPA_AUTHDATA | TCPA ENCAUTH Encrypted auth data. The encryption mechanism is
function dependent

49 TCPA_PAYLOAD_TYPE

Start of informative comment:

To specify the type of payload in the TCPA_STORE_ASYM structure.
End of informative comment.

Definition

typedef unsigned char TCPA _PAYLOAD TYPE;

TCPA_ENTITY_TYPE Values

Value Event Name Comments

‘A’ TCPA_PT_ASYM The entity is an asymmetric key
‘D’ TCPA_PT_DATA The entity is data

‘M’ TCPA_PT_MIGRATE | The entity is a migration blob

Version 1.0 25 January, 2001

TCPA Main Specification Page 25

T TCPA_PT_MAINT The entity is a maintenance blob

4.10 TCPA_INTERNAL_HDR

Start of informative comment:

This structure applies header values to the encoded blob before the encryption process.

End of informative comment.

Definition

typedef struct tdTCPA | NTERNAL_ HDR { /'l pos I en t ot al
BYTE dat a; /1 0 1 1
} TCPA | NTERNAL HDR;

Parameters

Type Name Description

BYTE dat a This SHALL be a magic number to ensure that RSA encryption

will always succeed. The value MUST be 0x00

Version 1.0 25 January, 2001

TCPA Main Specification Page 26

4.11 TCPA_PUBKEY

Start of informative comment:

The TCPA_PUBKEY structure contains the public portion of an asymmetric key pair. The algorithm
identification comes from the TCPA_KEY structure.

End of informative comment.
Definition

typedef struct tdTCPA PUBKEY{
Ul NT32 publ en;
[size_is(publen)] BYTE* pubkey;
} TCPA_PUBKEY;

Parameters

Type Name Description

Ul NT32 Publ en This SHALL be the length of the pubkey field
BYTE* pubKey This SHALL be the algorithm specific information

Descriptions
The algorithm specific information provides the public key for a specific algorithm.
The TPM MUST support TCPA_RSA_PUBKEY as the structure in parameter pubKey.

4.11.1TCPA_RSA_PUBKEY

This structure is the pubkey parameter of TCPA_PUBKEY when the algorithmID parameter of
TCPA_KEY is TCPA_ALG_RSA. It provides the algorithm specific information for an RSA public key.

Definition

typedef struct tdTCPA _RSA PUBKEY{
U NT32 nodul usSi ze;
[size_is(nodul usSi ze)] BYTE* nodul us;
} TCPA RSA PUBKEY;

Parameters

Type Name Description

Ul NT32 nmodul usSi ze This SHALL be the size of the modulus

BYTE* nodul us This SHALL be the modulus of the RSA public key

Version 1.0 25 January, 2001

TCPA Main Specification Page 27

4.12 TCPA_PRIVKEY

Definition

typedef struct tdTCPA_ PRI VKEY{
U NT32 Privlen;
[size_is(Privlen)] BYTE* Privkey;
} TCPA_PRI VKEY;

Parameters

Type Name Description

Ul NT32 Privlen This SHALL be the length of the priv field

BYTE* PrivKey This SHALL be an encrypted TCPA_STORE_ASYMKEY

Descriptions
The TPM MUST store in the Privkey parameter only an encrypted TCPA_STORE_ASYMKEY structure.

Version 1.0 25 January, 2001

TCPA Main Specification

4.13 TCPA_KEY

Start of informative comment:

Page 28

The TCPA_KEY structure provides a mechanism to transport the entire asymmetric key pair. The private
portion of the key always is encrypted.

EndStart of informative comment.:

Definition

typedef struct tdTCPA KEY{
TCPA _VERSI ON ver ;
Ul NT32 al gorithm D,
U NT32 parnfi ze;

[size_is(parnSize)]

TCPA _PUBKEY pubKey;
TCPA PRI VKEY pri vKey;

BYTE*

} TCPA_KEY;
Parameters
Type Name Description
TCPA_VERSI ON ver Version number defined in section 4.5.
Ul NT32 algorithm D This SHALL be the type of algorithm in use
Ul NT32 par ni ze This SHALL be the length of the parms field.
BYTE* par ms This SHALL be the algorithm specific parameters.
TCPA_PUBKEY pubKey This SHALL be the public portion of the key
TCPA_PRI VKEY privKey This SHALL be the private portion of the key

Descriptions

The algorithm ID comes from the TCPA_DEFINES.H file.

The TPM MUST support algorithm TCPA_ALG_RSA.

algorithmID equals TCPA_ALG_RSA

The parms parameter MUST contain a pointer to a UNIT16 that contains the key lengthMUST contain the

key size for the key pair.

Version 1.0 25 January, 2001

TCPA Main Specification Page 29

4.14 TCPA_ PCR_REGISTER
Start of informative comment:
TCPA_PCR_REGISTER is a structure used to return PCR contents and flags.

End of informative comment.

IDL Definition

typedef struct tdTCPA PCR _REG STER {
TCPA_PCRI NDEX I ndex
Ul NT32 Fl ags;

TCPA_PCRVALUE PCR:
} TCPA_PCR REG STER;

Parameters

Type Name Description

TCPA_PCRINDEX Index Index of the PCR that is being read

UINT32 Flags Flags register. Currently no flags are defined, so this parameter will

always be set to zero.

TCPA_PCRVALUE PCR Set to current contents of the PCR

Note that the PCR index is explicit in this structure. TCPA-protected capabilities will set this index when
returning this structure.

Version 1.0 25 January, 2001

TCPA Main Specification

Page 30

4.15 TCPA_PCR_EVENT

Start of informative comment:

Individual events are stored in the TCPA_PCR_EVENT variably sized data structure.

End of informative comment.

Definition
typedef struct tdTCPA PCR_EVENT {

Ul NT32 Lengt h;

TCPA_PCRI NDEX PCRI ndex;

[size_is(Length)] BYTE* Event ;

TCPA_EVENTTYPE Event Type;

TCPA_PCRVALUE Pcr Val ue

} TCPA_PCR _EVENT;
Where the structure members are as follows:
Type Name Description
UINT32 Length Length of the event parameter
UINT32 PCRIndex Index of the PCR to which this event belongs
BYTE* Event Variable-sized BYTE array
TCPA_EVENTTYPE | EventType The type of event
TCPA_PCRVALUE PcrValue The value EXTENDed into the PCR

TCPA defines the following event/s

EventType Values

upporting information types:

Comments

The TPM_Extend event is in response to loading a firmware or
software component for which a VE certificate was found. *Event
points to the VE certificate that was shipped with the platform firmware
or software (or discovered by other means). Size indicates the length
of this structure. ExtendValue is the digest of the firmware, software or
other code loaded.

The event was in response to loading a firmware or other software
component, but no VE certificate was found. The size is 0 and *Event
is unused. However, ExtendValue is the digest of the firmware
discovered. Absence of a VE certificate does not indicate lack of trust;
it merely indicates that a VE certificate was not available at this point
in boot. Upper-level software may be able to obtain such certificates.

Value | Event Name

0 EV_CODE_CERT

1 EV_CODE_NOCERT
2 EV_XML_CONFIG

The event describes the platform configuration. The supporting
information is a platform or firmware-defined XML data structure that
indicates security-relevant hardware configuration information. The
event logged to TPM_Extend is the SHA-1 digest of the XML data
structure, and the firmware guarantees that the configuration stated in
the data structure is in effect when the firmware relinquishes control to
the next module in boot. Size is the size in bytes of the XML data
structure, and *Event points to the data structure itself. The information
may include size of physical memory, number of processors, chipset
configuration, buses discovered and processor/bus frequencies.

Version 1.0 25 January, 2001

TCPA Main Specification Page 31

Firmware vendors are free to define the XML reporting structure and
select those parameters that are important for their platforms.

3 EV_NO_ACTION The action was not performed. The corresponding DIGEST structure
MUST be 0x1 (a single binary digit in the LSB of the DIGEST
structure), and this value MUST also be logged to the TPM using the
corresponding TPM_Extend operation. A supporting data structure
may be supplied containing information that describes why the event
did not occur. If such supporting information is supplied, it should be
well-formed XML. However, this supporting information is not required.

4 EV_SEPARATOR A list of actions was complete. This event must be used if more than
one event can be logged to the TPM and upper-level software needs

to be informed that logging was completed.

— | Reserved TCPA-reserved event types
(2'°-1)
22’2 — | User-definable Undefined and free for general-purpose use
(27-1)

Additional event types may be defined for TCPA usage in specific computing platforms (for example, the
PC).

Version 1.0 25 January, 2001

TCPA Main Specification Page 32

4.16 TCPA_AUDIT_EVENT structure

IDL Definition

typedef struct tdTCPA_AUDI T_EVENT{
TCPA_COMVAND_CODE or di nal ;
TCPA RESULT returncode;

} TCPA_AUDI T_EVENT;

Parameters

Type Name Description
TCPA_COMMAND_CODE | ordi nal Ordinal of the command
TCPA_RESULT returncode Return code for the command

Version 1.0 25 January, 2001

TCPA Main Specification Page 33

4.17 Storage Structures

4.17.1TCPA_SEALED_DATA

Start of informative comment:
The definition of this structure is necessary to ensure the enforcement of security properties.

This structure is in use by the TPM_Seal and TPM_Unseal commands to identify the PCR index and
values that must be present to properly unseal the data.

End of informative comment.
Definition

typedef struct tdTCPA SEALED DATA {
TCPA _VERSI ON ver ;
TCPA_MAG C1 Magi cNumnber ;
BOOL | sSeal edToPCR;
Ul NT32 dat aSi ze;
TCPA_COVMPQCSI TE_HASH di gest At Creati on;
TCPA_COWMPCSI TE_HASH di gest At Unseal ;
TCPA_SECRET aut hDat a;
TCPA_DI GEST t pnPr oof ;
BYTE* dat a;
} TCPA SEALED DATA;

Parameters

Type Name Description

TCPA_VERSION ver Version number defined in section 4.5.

TCPA_MAGIC1 magi cNumber The bytes 0x15, 0x13, to distinguish
TCPA_SEALED_ DATA blobs from other data.

BOOL | sSeal edToPCR This SHALL be TRUE or FALSE. If set to
FALSE, a TPM_Unseal command will not
check digestAtUnseal against PCR values

UINT32 dat aSi ze This SHALL be the size of the data parameter

TCPA_COMPOSITE_HASH di gest At Creati on This SHALL be the composite digest value of
the values, at the time when the seal is
performed, of the PCR registers to which
parameter data is sealed.

TCPA COMPOSITE_HASH di gest At Unseal This SHALL be the composite digest value of
the PCR register values to which parameter
data is sealed.

TCPA_SECRET aut hDat a This SHALL be the authorization data for this
value

TCPA_DIGEST t prPr oof This SHALL a copy of
TPM_PERSISTENT_FLAGS.tmpProof

BYTE* dat a This SHALL be the data to be sealed

Descriptions

Version 1.0 25 January, 2001

TCPA Main Specification Page 34

This entire structure is encrypted during the TPM_Seal process. When the TPM_Unseal decrypts this
structure the TPM_Unseal uses the information in the structure to validate the current configuration and
release the decrypted data.

Magic number

typedef struct tdTCPA MAG C1{
BYTE nuni{2] = 0x15, 0x13
} TCPA_MAG C1

Version 1.0 25 January, 2001

TCPA Main Specification Page 35

4.17.2TCPA_PCR_SELECTION
Start of informative comment:
This structure provides a standard method of specifying a list of PCR registers.

End of informative comment.

Definition

typedef struct tdTCPA _PCR_SELECTI ON {
TCPA_VERSI ON ver;
BYTE pcr Sel ect[16];
} TCPA_PCR_SELECTI ON,;

Parameters

Type Name Description

TCPA_VERSION ver Version number defined in section 4.5. This field is
present so that if the number of available PCR registers
changes this structure can accommodate the change.

BYTE pcr Sel ect This SHALL be a bit map that indicates if a PCR is
active or not

Description

When the least-significant-bit of byte [N+1] of pcrSelect is butted against the most-significant-bit of byte
[N] of pcrSelect for (15>=N>=0), the contiguous bit array so formed SHALL represent PCR indices in
monotonically increasing order, starting from PCR index zero represented by bit 0 of byte O of pcrSelect.

The state of each bit in pcrSelect indicates whether a PCR register is selected or not. When the bit is 1
then the corresponding PCR is selected, if 0 the PCR is not selected.

This structure allows for the selection of up to 128 PCR registers.

Version 1.0 25 January, 2001

TCPA Main Specification Page 36

4.17.3TCPA_PCR_COMPOSITE
Start of informative comment:

The composite structure provides the index and value of the PCR register to be used when creating the
value that SEALS an entity to the composite.

End of informative comment.

Definition

typedef struct tdTCPA PCR_COWPOSI TE {
TCPA PCR_SELECTI ON sel ect;
U NT32 val ueSi ze;
[size_is(valueSize)] BYTE* pcrVal ue;
} TCPA_PCR_COWPCSI TE;

Parameters

Type Name Description

TCPA_PCR_SELEC | sel ect This SHALL be the indication of which PCR values are
TION active

BYTE pcr Val ue This SHALL be an array of TCPA_PCR_VALUE

structures. The values come in the order specified by
the select parameter and are concatenated into a single
blob

4.17.4TCPA_KEY_FLAGS
Start of informative comment:
This structure compacts the flag information in the TCPA_STORE_ASYMKEY structure.

End of informative comment.

Definition
typedef struct tdTCPA KEY_FLAGS {
unsi gned | sWappedToPCR : 1;
unsi gned Redirection I
unsi gned M gratabl e 1;
unsi gned Vol atile 1;
uni sgned M gration 1;
unsi gned unused : 27;
} TCPA_KEY_FLAGS;
Parameters
Type Name Description
unsi gned | sWappedToPCr This SHALL indicate the use of PCRs. When FALSE the key
SHALL NOT be associated with PCR values. When TRUE
the key SHALL be associated with PCR value.
unsi gned Redi rection This SHALL indicate the use of redirected output. When
FALSE the output SHALL use the normal output
mechanism. When TRUE the output SHALL use a
redirected output mechanism.
unsi gned M grat abl e This SHALL indicate whether the key is migratable or not.

Version 1.0 25 January, 2001

TCPA Main Specification Page 37

When FALSE the key SHALL be non-migratable. When
TRUE the key SHALL be migratable.

unsi gned Vol atile This SHALL indicate whether the key MUST be unloaded
when the TPM is reset. When FALSE the TPM MUST
unload the key upon reset. When TRUE the TPM MUST
NOT unload the key upon reset.

unsi gned M gration This SHALL indicate that this is a migration blob

Description

For the purpose of this structure, the meaning of FALSE is the bit is off TRUE means the bit is on.

4.17.5TCPA_ASYM_HASH

Start of informative comment:

To allow for the size of TCPA_STORE_ASYMKEY to be under the modulus of a RSA 2048 bit key the
hash value for the PCR composite digest must be a fixed length field.

This fixes the hash algorithm to SHA-1 and the size to 20 bytes.
End of informative comment.
Definition

typedef struct tdTCPA_ASYM HASH{
BYTE dat a[20] ;
} TCPA_ASYM HASH;

Parameters
Type Name Description
BYTE dat a The data SHALL be the 20 bytes of information

Descriptions
The data SHALL be the result of a SHA-1 hash operation.
The data SHALL be the digest in the TCPA_COMPOSITE_HASH structure associated with this key.

Version 1.0 25 January, 2001

TCPA Main Specification Page 38

4.17.6 TCPA_STORE_ASYMKEY
Start of informative comment:

The TCPA _STORE_ASYMKEY structure provides the area to identity the private key factors of a
asymmetric key.

The design of the structure is so that for RSA keys with a key size of 2048 can encrypt the structure in
one operation.

Using typical RSA notation the structure would include P, and when loading the key include the
unencrypted P*Q which would be used to recover the Q value.

To accommodate the future use of multiple prime RSA keys the specification of additional prime factors is
an optional capability.

The TPM_KEY_LEGACY key type is to allow for use in applications where both signing and encryptions
operations occur with the same key. The use of this key type is deprecated.

This structure provides the basis of defining the protection of the private key. For the complete description
of the entire encryption process, see 8.16.1.

End of informative comment.

Changes in this structure MUST be reflected in the TCPA _MIGRATE_ASYMKEY structure (section
4.17.7).

Definition
typedef struct tdTCPA_STORE_ASYMKEY { /1 pos l en t ot al
TCPA _ALGORI THM I D Al gorithm D /1 0 4 4
TCPA KEYUSAGE KeyUsage; /1 4 2 6
Ul NT32 typeTag; /1 6 4 10
Ul NT32 dat aSi ze; /1 10 4 14
TCPA_SECRET aut h; /1 14 20 34
TCPA SECRET mi gration; /1 34 20 54
TCPA_ASYM HASH pcr Di gest ; /1 54 20 74
TCPA _KEY_FLAGS keyFl ags; [l 74 4 78
TCPA_AUTH_DATA USAGE aut hDat aUsage; /1 78 2 80
BYTE data[]; /1 80 128 208
} TCPA_STORE_ASYMKEY;
Parameters
Type Name Description
TCPA _PAYLOAD T | pt Typ This SHALL be the value from the payload type (key, data or
YPE migrate blob)
TCPA _ALGORI THM | Al gorithm D This SHALL be the algorithm identifier for the key in use.
_ID
TCPA_KEYUSAGE | KeyUsage This SHALL be the TCPA key usage that determines the
operations permitted with this key
Ul NT32 TypeTag This SHALL be additional information regarding the
algorithm.
Ul NT32 dat aSi ze This SHALL be the size of the data parameter.
TCPA_SECRET Aut h This SHALL be the authorization data necessary to
authorize the use of this value
TCPA SECRET M gration This SHALL be the migration marker to prevent this item

Version 1.0 25 January, 2001

TCPA Main Specification Page 39

from migrating from one TPM to another. Implementation is
left to TPM manufacturers.

TCPA_ASYM HASH | Pcr Di gest This SHALL be the digest of the PCR indices and PCR
values to verify when loading the walue. If IsWrappedToPCr
is FALSE, this value is 20 bytes, each set to OxFF.

TCPA _KEY_FLAGS | keyFl ags This SHALL be the indication of migration, redirection etc.
TCPA_AUTH_DATA | Aut hDat aUsage This SHALL indicate the authorization required upon each
_USAGE usage of the key

BYTE* dat a Actual private information dependent on key type. See

descriptions

TCPA_KEYUSAGE values

Name Value Description

TPM_KEY_SI GNI NG 0x0010 This SHALL indicate a signing key. The [private] key SHALL be
used for signing operations, only. This means that it MUST be a
leaf of the Protected Storage key hierarchy.

TPM_KEY_STORACE 0x0011 This SHALL indicate a storage key. The key SHALL be used to
wrap and unwrap other keys in the Protected Storage hierarchy,
only.

TPM _KEY_I| DENTI TY 0x0012 This SHALL indicate an identity key. The key SHALL be used for
operations that require a TPM identity, only.

TPM_KEY_LEGACY 0x0013 This SHALL indicate a key that can perform signing and
decryption. The key MAY be used for both signing and
decryption operations.

TPM KEY_AUTHCHANGE | 0X0014 This SHALL indicate an ephemeral key that is in use during the
ChangeAuthAsym process, only.

TPM KEY_DATA15 0x0015 This SHALL indicate a [private] key that may UNBIND a value in
PKCS#1 1.5 version format, only
TPM KEY_DATA20 0x0016 This SHALL indicate a [private] key that may UNBIND a value in

PKCS#1 2.0 version format, only

TCPA_AUTH_DATA_USAGE values
Start of informative comment:

The method for providing universal access to an entity is to use a well known value for the authorization
data.

End of informative comment.

Name Value Description

TPM _AUTH_ALWAYS 0x01 This SHALL indicate that on each usage of the key the
authorization MUST be performed

All other values are reserved for future use.

Descriptions
If AlgorithmID equals TCPA_ALG_RSA

Version 1.0 25 January, 2001

TCPA Main Specification Page 40

The TypeTag parameter SHALL indicate the number of prime factors in use.
All migratable keys MUST be RSA keys with 2 prime factors.
When TypeTag equals 2

The TPM SHALL store and encrypt one of the prime factors in the TCPA_STORE_ASYMKEY
structure. The data parameter MUST contain the prime factor for the key. Upon loading of the key the
TPM calculates the other prime factor by dividing the modulus by this value.

When TypeTag is greater than 2

The TPM MAY support RSA keys with more than 2 prime factors.
Encryption
Start of informative comment:

The design of the TCPA STORE_ASYMKEY structure holds a 2048 bit RSA key one encryption
operation by a 2048 bit RSA key. This sets the maximum size of the TCPA_STORE_ASYMKEY structure
as 208 bytes.

The encoding of the area by RSAES_OAEP provides protections during migration.
End of informative comment.

The design of the TCPA_STORE_ASYMKEY structure is such that for an RSA key of 2048 bits the key
can be encrypted in one operation.

The TPM SHALL use the RSAES_OAEP protocol from PKCS#1 version 2.0.
The following members of the ASYMKEY structure match the parameters in OAEP as follows:
OAEP Parameters

OAEP TCPA_STORE_ASYMKEY Description
SEED The TPM SHALL provide the next 20 bytes
from the TPM RNG
P label ‘TCPA’ — a four (4) byte string
The TCPA_STORE_ASYMKEY area The information to encrypt

Version 1.0 25 January, 2001

TCPA Main Specification Page 41

4.17.7TCPA_MIGRATE_ASYMKEY

Definition

typedef struct tdTCPA M GRATE_ASYMKEY { /'l pos I en t ot al
Ul NT32 Al gorithm D /1 0 4 4
TCPA_KEYUSAGE KeyUsage; /1 4 2 6
Ul NT32 typeTag; /1 6 4 10
U NT32 dat aSi ze; /1 10 4 14
TCPA_SECRET aut h; /1 14 20 34
TCPA_ASYM HASH pcr Di gest ; /1 34 20 54
TCPA_KEY_FLAGS keyFl ags; /1 54 4 58
TCPA_AUTH_DATA_USAGE aut hDat aUsage; /l 58 2 60
BYTE data[]; /1 60 128 188

} TCPA_M GRATE_ASYMKEY;

Parameters

Type Name Description

Al'l paraneters | All fields MUST match the TCPA _STORE_ASYMKEY
(section 4.17.6) fields with the exception of the Migration
field which is absent.

Version 1.0 25 January, 2001

TCPA Main Specification

Page 42

4.17.8 TCPA_MAINTENANCE_ASYMKEY

Definition

typedef struct tdTCPA_MAI NTENANCE ASYMKEY { /'l pos I en t ot al
TCPA_NONCE t pnPr oof ; /1 0 20 20
BYTE data[]; /1 20 128 148

} TCPA_MAI NTENANCE_ASYMKEY;

Parameters

Type Name Description

TCPA_NONCE t pnPr oof This SHALL be a copy of the

TCPA_PERSISTENT_FLAGS.tpmProof
BYTE* dat a This SHALL be one of the primes of the SRK.

Version 1.0 25 January, 2001

TCPA Main Specification Page 43

4.18 TCPA_AUTH

IDL Definition

typedef struct tdTCPA_ AUTH{
TCPA_AUTHHANDLE aut hHandl e;
TCPA_NONCE nonce;
TCPA _DI GEST di gest;
BOOL conti nueFl ag;

} TCPA_AUTH,;

Parameters

Type Name Description

TCPA_AUTHHANDLE aut hHandl e The handle that the TPM uses to locate the session
information that it maintains regarding this authorization
session.

TCPA_NONCE nonce The nonce from the sender of the structure. For
incoming packets, the caller sets this value. For outgoing
packets, this value is set by the TPM.

TCPA _DIGEST di gest The result of the HMAC calculation.

BOOL conti nueFl ag Defines whether (TRUE) or not (FALSE) the TPM keeps
the session open after execution of the command. May
be set by TPM to FALSE in response to certain
operations.

Description

The TPM MUST read an incoming TCPA_AUTH structure and generate the outgoing TCPA_AUTH
structure.

Version 1.0 25 January, 2001

TCPA Main Specification

Page 44

4.19 TCPA_CERTIFY_INFO Structure

Start of informative comment:

When the TPM certifies a key, it must provide a signature with a TPM identity key on information that
describes that key. This structure provides the mechanism to do so.

End of informative comment.

IDL Definition

typedef struct tdTCPA _CERTI FY_I NFQ{
TCPA VERSI ON Ver si on;

TCPA_KEY_FLAGS keyFl ags;

Ul NT32 typeTag;
TCPA_AUTH _DATA USAGE aut hDat aUsage;
TCPA_KEYUSAGE KeyUsage;
TCPA_COWMPCSI TE_HASH Di gest Val ue;

TCPA_DI GEST pubkeyDi gest ;

TCPA_NONCE Dat a;
TCPA_PCR_SELECTI ON pcr Li st ;

b

Parameters

Type Name Description

TCPA_VERSION Ver si on TCPA version structure; section 4.5.

TCPA_KEY_FLAGS | keyFl ags This SHALL be set to the same value as the corresponding
parameter in the TCPA_STORE_ASYM structure that
describes the private part of the public key that is being
certified.

UINT32 typeTag This SHALL be set to the same value as the corresponding
parameter in the TCPA_STORE_ASYM structure that
describes the private part of the public key that is being
certified.

TCPA_AUTH_DATA aut hDat aUsa | This SHALL be set to the same value as the corresponding

_USAGE ge parameter in the TCPA_STORE_ASYM structure that
describes the private part of the public key that is being
certified.

TCPA_KEYUSAGE KeyUsage This SHALL be set to the same value as the corresponding
parameter in the TCPA_STORE_ASYM structure that
describes the private part of the public key that is being
certified.

TCPA_DIGEST Di gest Val ue | This SHALL be the result of the composite hash algorithm
using pcrlList for input. If the public key that is being certified is
not bound to any PCRs, this SHALL be set to
TCPA_CERTIFY_NOPCR.

TCPA_DIGEST pubDi gest This SHALL be the hash of the public key being certified.

TCPA_NONCE Dat a This SHALL externally provided data.

TCPA_PCR_SELEC | pcrlList This SHALL be the list of PCR indices that were used to

TION

compute the composite hash in DigestValue. This SHALL be
an empty list (pcrList.pcrCount set to 0) when the public key
that is being certified is not bound to any PCRs.

Version 1.0 25 January, 2001

TCPA Main Specification Page 45

4.20 TCPA_QUOTE_INFO Structure

Start of informative comment:
This structure provides the mechanism for the TPM to quote the current values of a list of PCRs.

End of informative comment.

IDL Definition

typedef struct tdTCPA QUOTE_ | NFQ{
TCPA_VERSI ON Ver si on;
BYTE fi xed[4];
TCPA_COWPOSI TE_HASH Di gest Val ue;
TCPA DI GEST Ext er nal Dat a,

} TCPA_QUOTE_I NFQ,

Parameters

Type Name Description

TCPA_VERSION Ver si on TCPA version structure; section 4.5.
BYTE fixed This SHALL always be the string ‘QUOT’

TCPA_COMPOSITE_HASH Di gest Val ue This SHALL be the result of the composite hash
algorithm using the current values of the requested
PCR indices.

TCPA _DIGEST Ext er nal Dat a 160 bits of externally supplied data

Version 1.0 25 January, 2001

TCPA Main Specification

4.21 TCPA_KEY_INFO

Informative comment

Page 46

This structure provides the information regarding a key in response to a TPM_GetCapability call.

End of informative comment.

typedef struct tdTCPA _KEY_I NFQ{
TCPA_VERSI ON Ver si on;
TCPA_KEY i nf o;
Ul NT32 typeTag;
TCPA_KEYUSAGE KeyUsage;
BOOL par ent PCRSt at us;
TCPA_AUTH _DATA USAGE aut hDat aUsage;
TCPA _PCR_SELECTI ON pcrlList;

} TCPA_KEY_I NFO

Parameters

Type Name Description

TCPA_VERSION Ver si on TCPA version structure; section 4.5.

TCPA_KEY info The input structure contains all parameters except
pubkey and privkey (which are NULL), to specify the
size and type of the new key.

UINT32 typeTag This SHALL be set to the same value as the
corresponding parameter in the TCPA_STORE_ASYM
structure that describes the private part of the public key
that is being certified.

TCPA_KEYUSAGE KeyUsage This SHALL be set to the same value as the

corresponding parameter in the TCPA_STORE_ASYM
structure that describes the private part of the public key
that is being certified.

BOOL

par ent PCRSt at us

This SHALL indicate if any parent key was wrapped to a
PCR

TCPA_AUTH_DATA_
USAGE

aut hDat aUsage

This SHALL be set to the same value as the
corresponding parameter in the TCPA_STORE_ASYM
structure that describes the private part of the public key
that is being certified.

TCPA_PCR_SELECT
ION

pcrLi st

This SHALL be the list of PCR indices that were used to
compute the composite hash in DigestValue. This
SHALL be an empty list (pcrList.pcrCount set to 0) when
the public key that is being certified is not bound to any
PCRs.

Version 1.0 25 January, 2001

TCPA Main Specification Page 47

4.22 Flag Structures

Version 1.0 25 January, 2001

TCPA Main Specification Page 48
4.22.1TCPA_PERSISTENT_FLAGS Structure
IDL Definition
typedef struct tdTCPA PERSI STENT_ FLAGS{
BOOL di sabl e;
BOOL owner shi p;
BOOL deacti vat ed;
BOOL readPubek;
BOOL di sabl eOwner Cl ear;
BOOL Al | owMai nt enance;
BYTE revMaj or;
BYTE revM nor;
TCPA_NONCE t prPr oof ;
TCPA _PUBKEY Manuf act urer Pub;
} TCPA_PERSI STENT_FLAGS;
Type
TPM shielded location
Parameters
Type Name Description
BOOL di sabl e The state of the disable flag. See 8.13
BOOL owner shi p The ability to install an owner. See 8.12
BOOL deacti vat ed The state of the active flag. See 8.14
BOOL r eadPubek The abilty to read the PUBEK without owner
authorization. See 9.2.2
BOOL di sabl eOaner Cl ear If the owner authorized clear commands are active. See
8.9.6
BOOL Al | owMai nt enance Can the TPM Owner create a maintenance archive. See
7.2.14
BYTE revMaj or This SHALL be the TPM major revision indicator. This
SHALL only be set by the TPME.
BYTE revM nor This SHALL be the TPM minor revision indicator. This
SHALL only be set by the TPME.
TCPA_NONCE t prPr oof This SHALL be the random number that each TPM

maintains to validate blobs in the SEAL and other

processes.

TCPA_PUBKEY

Manuf act ur er Pub

This SHALL be the manufacturers public key to use in the
maintenance operations. If maintenance is not available in
the TPM this field may be null.

Description

The data structure TCPA PERSISTENT_FLAGS SHALL exist only in a TPM shielded-location and
SHALL be non-volatile.

Disable flag

Version 1.0 25 January, 2001

TCPA Main Specification Page 49

If disable has the value of TRUE, all commands except TPM_GetCapability, TPM_Extend and the TPM
enabling capabilities SHALL return the value TCPA_DISABLED.

Ownership flag

If ownership has the value of FALSE, then any attempt to install an owner fails with the error value
TCPA_INSTALL_DISABLED.

Deactivated flag
This flag sets the state of TCPA_VOLATILE_FLAGS.deactivated upon initialization.
readPubek

If readPubek is TRUE then the TPM_ReadPubek will return the PUBEK, if FALSE the command will
return TCPA_DISABLED_CMD.

DisableOwnerClear

If disableOwnerClear is TRUE then the clear commands requiring owner authorization will return
TCPA_CLEAR_DISABLED, if false the commands will execute.

Version 1.0 25 January, 2001

TCPA Main Specification Page 50

4.22.2TCPA_VOLATILE_FLAGS Structure

IDL Definition

typedef struct tdTCPA VOLATI LE FLAGS{
BOOL deacti vat ed;
BOOL di sabl eForceCl ear;;

} TCPA_VOLATI LE_FLAGS;

Type
TPM shielded location

Parameters

Type Name Description

BOOL Deacti vat ed The state of the active flag.
BOOL Di sabl eFor ceCl ear The state of the force clear flag.
Action

The data structure TCPA VOLATILE_FLAGS SHALL exist only in a TPM shielded-location and SHALL
be volatile.

Deactivated flag

The TPM SHALL set the state of the TCPA VOLATILE_FLAGS.deactivated to the state of
TCPA_PERSISTENT_FLAGS.deactivated on each startup.

If deactivated is TRUE the following commands will execute with their normal protections
TPM_GetCapability
TPM_Extend
TPM_TakeOwnership
TPM enabling and disabling
TPM activation and deactivation
All other commands SHALL return TCPA_DEACTIVATED.
DisableForceClear

If disableForceClear is TRUE then the TPM_ForceClear command returns TCPA_CLEAR_DISABLED, if
FALSE then the command will execute.

Version 1.0 25 January, 2001

TCPA Main Specification

4.23 Credentials

TPM Endorsement
Credential

Conformance
Credential

Fi I

Credential

=

Identity
Credential

Validation
Credentials

Page 51

Version 1.0 25 January, 2001

TCPA Main Specification Page 52

4.23.1Evidence of Subsystem Endorsement

Description
struct TPM _ENDORSEMENT_CREDENTI AL = {
BYTE | abel = “TCPA Trusted Pl atform Mddul e Endorsenent”
TCPA_PUBKEY publ i c_endor senent _key
REFERENCE t pm_nodel
REFERENCE tpm.distributed_validation
REFERENCE tprme_reference
TCPA_VERSI ON TCPA_ver si on
SI GNATURE si gnature_val ue}

This is an abstract definition, section 9.5.1 contains the concrete
representation.

Parameters

Type Name Description

Version 1.0 25 January, 2001

TCPA Main Specification Page 53

BYTE Label This SHALL be the ASCII characters
“TCPA Trusted Platform Module
Endorsement”

TCPA_PUBKEY publi c_endor senent _key This SHALL be the PUBEK returned by a
TPM_CreateEndorsementKeyPair
command.

REFERENCE t pm_nodel This SHALL be a reference to the type of
implementation of protected capabilities
and shielded locations that created the
PUBEK, plus a reference to the identity of
the manufacturer of that implementation.

REFERENCE tpm.distributed_validation | This SHALL be a reference to fields that
indicate the security qualities of the
implementation of protected capabilities
and shielded locations that created the
PUBEK.

REFERENCE tpme_ref erence This SHALL be an unambiguous
indication of the identity of the (TPM)
entity that attests that the implementation
of protected capabilities and shielded
locations conforms to the TCPA

specification.

VERSION TCPA_version This SHALL be the version specified in
section 4.5.

SIGNATURE si gnat ure_val ue This SHALL be the signature over all

previous fields in
TPM_ENDORSEMENT_CREDENTIAL,
using the private key of the tpme-
reference.

When an entity presents evidence to a Privacy CA that an implementation of protected capabilities and
shielded locations conforms to the TCPA specification, that evidence SHALL include the data in the data
structure TPM_ENDORSEMENT_CREDENTIAL.

A (TPME) entity SHALL NOT create the data structure TPM_ENDORSEMENT_CREDENTIAL unless the
entity is satisfied that the PUBEK referenced in TPM_ENDORSEMENT_CREDENTIAL was returned in
response to a TPM_CreateEndorsementKeyPair command by an implementation of protected capabilities
and shielded locations that meets the TCPA specification.

If the data structure TPM_ENDORSEMENT_CREDENTIAL is stored on a platform after an Owner has
taken ownership of that platform, it SHALL exist only in storage to which access is controlled and is
available to authorized entities.

Version 1.0 25 January, 2001

TCPA Main Specification Page 54

4.23.2Evidence of Platform Endorsement
Start of informative comment:

The purpose of platform_credential is to provide evidence that a platform correctly incorporates an
implementation of the protected capabilities and shielded locations of a TCPA Subsystem.

Platform_credential is an attestation that a platform contains a genuine TCPA Subsystem.
Platform_credential contains information that a Privacy CA may use in judging whether the Privacy CA
will attest to an identity of that TCPA Subsystem. Platform_credential contains information that the
Privacy CA must use in attesting to an identity of that TCPA Trusted Platform Subsystem.

Platform_credential is tagged with TCPA_version so as to indicate the version of the capability that
created the PUBEK at the time that the key was generated. This may be useful in the event that
capabilities are field-upgraded.

TPM-reference is the means of referencing the specific implementation of protected capabilities and
shielded locations that is incorporated into the platform. It will be required by the Privacy CA when
judging whether the Privacy CA will attest to a TCPA TPM identity

The conformance-credential contains a set of conformance UIDs that unambiguously indicate the
conformance to the TCPA specification of the TPM that is incorporated into the platform. These UIDs
are the “tpm-protection-profile” and “tpm-security-target”. The conformance credential also contains a
set of conformance UIDs that unambiguously indicate the conformance to the TCPA specification of
the means by which the platform incorporates an implementation of the TPM, the implementation of
the root-of-trust-for-measurement, and the means by which the platform incorporates an
implementation of the root-of-trust-for-measurement. These UIDs are the “foundation-protection-
profile” and *“foundation-security-target”. All these UIDs will be required by the Privacy CA when
judging whether the Privacy CA will attest to a TCPA TPM identity.

“TCPA Trusted Platform Endorsement” identifies a data structure as platform_credential and enables
the Platform Entity (PE) to sign the data with a key that is not exclusively reserved for signing
platform_credential.

PE_reference is the means of referencing the PE. It may be required by the Privacy CA when judging
whether the Privacy CA will attest to a TCPA TPM identity.

platform_model is the means of referencing the type of platform. The reference includes the
implementation of TCPA foundations in the platform. The foundations include the root-of-trust-for
measurement that is incorporated into the platform, the method of incorporation of the RTM, and the
method of incorporation of the TPM. It may be required by the Privacy CA when judging whether the
Privacy CA will attest to a TCPA TPM identity and is required by the Privacy CA when attesting to a
TCPA TPM identity.

platform_distributed_validation is a convenient immediate reference to the security properties of the
platform. The reference includes the implementation of TCPA foundations in the platform. The
foundations include the RTM that is incorporated into the platform, the method of incorporation of the
RTM, and the method of incorporation of the TPM. It may be required by the Privacy CA when
judging whether the Privacy CA will attest to a TCPA TPM identity and is required by the Privacy CA
when attesting to a TCPA TPM identity.

Access to the platform_credential must be restricted to entities that have a “need to know.” This is for
reasons of privacy.

End of informative comment.
Description

When an entity presents evidence to a Privacy CA that a platform conforms to the TCPA specification,
that evidence SHALL include the data in the data structure platform_credential.

Version 1.0 25 January, 2001

TCPA Main Specification Page 55

An entity (PE) SHALL NOT create the data structure platform_credential unless the entity is satisfied that
the platform conforms to the conformance credential referenced inside platform_credential and contains
the TPM referenced inside platform_credential.

Definition

struct PLATFORM CREDENTI AL ={
ASCl | _STRI NG “TCPA Trusted Pl atform Endorsenment”
REFERENCE tpmcredential -reference
REFERENCE conf ormance-credenti al -reference
REFERENCE pl at f or m_nodel
REFERENCE pl atformdi stributed_validation
REFERENCE pe-reference
TCPA_VERSI ON TCPA version
SI GNATURE si gnat ure_val ue}

This is an abstract definition, section 9.5.2 contains the <concrete
representation.

Parameters

Type Name Description

ASCII_STRING “TCPA Trusted Platform| This SHALL be the ASCII string “TCPA

Endor senent” Trusted Platform Endorsement”

REFERENCE tpmcredential -reference This SHALL be an unambiguous indication
of the endorsement credential of the TPM
incorporated into the platform.

REFERENCE conf or mance- credenti al - This SHALL be an unambiguous indication

reference of the conformance UIDs that attest that the
design of the platform conforms to the
TCPA specification.

REFERENCE pl at f or m_nodel This SHALL be a reference to the type of
the platform, including the TCPA
foundations in the platform, plus a reference
to the identity of the manufacturer of that

platform.
REFERENCE platformdistributed_valid | This SHALL be fields that indicate the
ation general security qualities of the platform.
REFERENCE pe-reference This SHALL be an unambiguous indication

of the identity of the (platform) entity that
attests to the design and construction of the

platform.

TCPA_VERSION TCPA_ver si on This SHALL be the version specified in
section 4.5.

SIGNATURE si gnature_val ue This SHALL be the signature over all

previous fields in platform_credential, using
the private key of the pe-reference.

If the data structure platform_credential is stored on a platform after an Owner has taken ownership of
that platform, it SHALL exist only in storage to which access is controlled and is available to authorized
entities.

Version 1.0 25 January, 2001

TCPA Main Specification Page 56

4.23.3Evidence of Platform Conformance

Start of informative comment:

The purpose of conformance_credential is to provide evidence that the design of the Subsystem in a
platform correctly conforms to the TCPA specification, and that the design of the method of incorporation
of the Subsystem in the platform correctly conforms to the TCPA specification.

Conformance_credential is an attestation that the overall design of a platform satisfies the TCPA
specification. Conformance_credential contains information that a Privacy CA may use in judging whether
the Privacy CA will attest to an identity of that TCPA Subsystem. Conformance_credential contains
information that the Privacy CA must use in attesting to an identity of that TCPA Trusted Platform
Subsystem.

Conformance_credential is tagged with TCPA_version so as to indicate the version of the capability that
created the PUBEK at the time that the key was generated. This may be useful in the event that
capabilities are field-upgraded.

Conformance_credential contains identifiers (UIDs) that indicate the protection profile and the security
target of both the TPM and the RTM, and the methods by which they are incorporated into the platform.

End of informative comment.
Description

When an entity presents evidence to a Privacy CA that a platform conforms to the TCPA specification,
that evidence SHALL include the data in the data structure conformance_credential.

A (conformance) entity SHALL NOT create the data structure conformance_credential unless the entity is
satisfied that the design of both the Subsystem and its incorporation into the platform are accurately and
unambiguously represented by the information in conformance_credential.

typedef struct CONFORMANCE CREDENTI AL ={

ASCl | _STRI NG “TCPA Confornmance Credential”
CONFORM_UI D tpm_pp
CONFORM_UI D t pm st
CONFORM_UI D foundati on_pp
CONFORM_UI D foundati on_st
REFERENCE ce_reference
TCPA_VERSI ON TCPA version
S| GNATURE si gnature
}
This is an abstract definition; section 9.5 contains the concrete representation.
Parameters
Type Name Description
ASCII_STRING “TCPA Conf or mance | This SHALL be the ASCII string “TCPA
Credential” Conformance Credential”
CONFORM_UID tpm_pp This SHALL be the UID that unambiguously
identifies the protection profile of the TPM
CONFORM_UID t pm_st This SHALL be the UID that unambiguously
identifies the security target of the TPM
CONFORM_UID foundati on_pp This SHALL be the UID that unambiguously
identifies the protection profile of the TCPA
foundations in the platform.
CONFORM_UID foundati on_st This SHALL be the UID that unambiguously

Version 1.0 25 January, 2001

TCPA Main Specification Page 57

identifies the security target of the TCPA
foundations in the platform.

REFERENCE ce_reference This SHALL be an unambiguous indication of
the identity of the (Conformance) entity that
attests to the overall design of the platform.

TCPA_VERSION TCPA version This SHALL be the version specified in section
4.5.
SIGNATURE si gnature_val ue This SHALL be the signature over all previous

fields in CONFORMANCE_CREDENTIAL,
using the private key of the ce_reference.

Version 1.0 25 January, 2001

TCPA Main Specification Page 58

4.23.4TCPA Validation Data
Start of informative comment:

The purpose of TCPA Validation Data is to state the values of integrity metrics that should be obtained
when the component described by the validation data is working properly.

TCPA Validation Data identifies a data structure as validation_data and enables the PE to sign the data
with a key that is not exclusively reserved for signing validation_data.

End of informative comment.

All components that influence the software environment in a platform SHOULD have corresponding
validation data.

The representation of a component SHALL reflect the way that the component influences the software
environment in a platform. All representations SHALL include a description of the manufacturer, the
common name of the component, the version of the component, and a field that describes the security
qualities of the component.

The representation of a component SHALL NOT in any way provide information that exposes the identity
of a specific component.

The validation data of a component SHALL be validation_data
IDL Description
t ypedef struct VALI DATI ON_DATA ={

ASCI | _STRI NG “TCPA Val idation Data”

ASCI | _STRI NG conponent _manuf acturer,

ASCI | _STRI NG conponent _nane,

ASCI | _STRI NG conmponent _ver si on,

DI GEST i nstruction_di gest,

REFERENCE conmponent _di stri buted_validation,
REFERENCE ve_reference,

TCPA_VERSI ON TCPA _version,

S| GNATURE val i dati on_dat a_si gnat ure_val ue}

This is an abstract definition; section 9.5.4 contains the concrete representation.

Parameters

Type Name Description

ASCII_STRING “TCPA Validation Data” | This SHALL be the ASCII string “TCPA
Validation Data.”

ASCII_STRING conponent _manuf act ur er This SHALL be an ASCII string stating the
name of the manufacturer of the
component.

ASCII_STRING component _nane This SHALL be an ASCII string stating the
common name of the component.

ASCII_STRING conponent _ver si on This SHALL be an ASCII string stating the
version of the component.

DIGEST i nstruction_di gest This SHALL be a digest of any
instructions in the component that are
intended to execute on the main
computing engine of the platform.

REFERENCE conponent _di stri buted_ | This SHALL be a convenient immediate

val i dation reference to the security properties of the

Version 1.0 25 January, 2001

TCPA Main Specification Page 59

reference to the security properties of the
component.

REFERENCE ve_reference This SHALL be an unambiguous
indication of the identity of the (validation)
entity that attests to the validation data.

TCPA_VERSION TCPA version This SHALL be the version specified in
section 4.5.
SIGNATURE val i dati on_dat a_si gnat This SHALL be the result of signing all
ure_val ue fields (except this field) in

VALIDATION_DATA using the signature
(private) key of VE_reference.

4.23.5Evidence of Trusted Platform Module Identity

Start of informative comment:

The data in TPM_IDENTITY_CREDENTIAL is presented whenever an entity requires proof that an
anonymous identity belongs to a genuine TCPA Subsystem.

TPM_IDENTITY_CREDENTIAL may be accompanied by other data, depending upon circumstances.
When presented in response to an integrity challenge, it may be accompanied by conventional certificates
and validation data, for example.

TPM_IDENTITY_CREDENTIAL is tagged with TCPA version so as to indicate the version of the
capability that created the identity key at the time that the key was generated. This may be useful in the
event that capabilities are field-upgraded.

The phrase “TCPA Trusted Platform Module identity” identifies a data structure as a Trusted Platform
Module identity and enables the Privacy CA to sign the data with a key that is not exclusively reserved for
signing TPM identities.

Access to the TPM_IDENTITY_CREDENTIAL must be restricted to entities that have a “need to know.”
This is for reasons of privacy.

End of informative comment.
Description

When an entity presents evidence that an identity belongs to a Subsystem, that evidence SHALL include
the data in the data structure TPM_IDENTITY_CREDENTIAL.

struct TPM | DENTI TY_CREDENTI AL ={

ASCl | _STRI NG “TCPA Trusted Platformldentity”
UNI CODE i dentitylLabel

TCPA_PUBKEY i denti t yPubKey

REFERENCE t pm_nodel

REFERENCE tpm.di stributed_validation
CONFORM _UI D tpm_pp

CONFORM_UI D t pm st

REFERENCE pl at f or m_nodel

REFERENCE pl atformdi stributed_validation
CONFORM_UI D foundati on_pp

CONFORM_UI D foundati on_st

REFERENCE p-ca_reference

TCPA_VERSI ON TCPA version

SI GNATURE si gnat ure_val ue}

This is an abstract definition; section 9.5.5 contains the concrete representation.

Version 1.0 25 January, 2001

TCPA Main Specification Page 60

Parameters

Type Name Description

ASCII_STRING “TCPA. Trusted Platform| This SHALL be the ASCIl string “TCPA
Modul e ldentity” Trusted Platform Identity.”

UNICODE i dentitylLabel This SHALL be a textual string associated

with the TPM identity.

TCPA_PUBKEY

i dentityPubKey

This SHALL be a public key associated with
the TPM identity.

REFERENCE t pm_nodel This SHALL be a reference to the type of TPM
in the platform, plus a reference to the identity
of the manufacturer of TPM.

REFERENCE tpm.distributed_validation | This SHALL be fields that indicate the security

qualities of the TPM in the platform.

CONFORM_UID tpm_pp This SHALL be the UID that unambiguously
identifies the protection profile of the TPM
CONFORM_UID t pm_st This SHALL be the UID that unambiguously

identifies the security target of the TPM

REFERENCE pl at f or m_nodel This SHALL be a reference to the type of the
platform, including the TCPA foundations in
the platform, plus a reference to the identity of
the manufacturer of that platform.

REFERENCE pl atformdi stributed_valid | This SHALL be fields that indicate the security

ation

qualities of the platform.

CONFORM_UID

foundati on_pp

This SHALL be the UID that unambiguously
identifies the protection profile of the TCPA
foundations in the platform.

CONFORM_UID

foundati on_st

This SHALL be the UID that unambiguously
identifies the security target of the TCPA
foundations in the platform.

REFERENCE

p-ca_reference

This SHALL be an unambiguous indication of
the identity of the (Privacy CA) entity that
attests to the TPM identity.

TCPA_VERSION

TCPA version

This SHALL be the version specified in
section 4.5.

SIGNATURE

si gnature_val ue

This SHALL be the signature over all previous
fields in TPM_IDENTITY_CREDENTIAL,
using the private key of the p-ca_reference.

If the data structure TPM_IDENTITY_CREDENTIAL is stored on a platform after an Owner has taken
ownership of that platform, it SHALL exist only in storage to which access is controlled and is available to

authorized entities.

Version 1.0 25 January, 2001

TCPA Main Specification

4.24 TCPA_ALGORITHM_PARMS

Start of informative comment:

This provides a standard mechanism to define the algorithm parameters
End of informative comment.

Definition

typedef struct tdTCPA _ALGORI THM PARMS {
Ul NT32 al gorithm D,
U NT32 parnSi ze;
[size_is(parnsSize)] BYTE* parms;
} TCPA_ALGORI THM PARMS;

Page 61

Parameters

Type Name Description

UINT32 al gorithm D This SHALL be the algorithm in use

UINT32 par nSi ze This SHALL be the size of the parms field in bytes
BYTE* par ms This SHALL be the parameter information

Descriptions

Name Value Description parm Contents
TCPA_ALG_RSA 0x0000001 The RSA algorithm. UINT32 Size of modulus
TCPA_ALG_DES 0x0000002 The DES algorithm IV value for CBC calculation
TCPA_ALG_3DES 0X0000003 The 3DES algorithm IV value for CBC calculation
TCPA_ALG_AES 0x0000004 The AES algorithm IV value for CBC calculation
TCPA_ALG_SHA 0x0000005 The SHA1 algorithm ignored

TCPA_ALG_HMAC 0x0000006 The HMAC algorithm ignored

algorithmID equals TCPA_ALG_RSA

The parms field contains a UINT32 that specifies the size of the RSA key in bits.

algorithmID equals TCPA_ALG_DES, TCPA_ALG_3DES, TCPA_ALG_AES

The parms field contains a TCPA_SYMMETRIC_KEY that is the IV value for a CBC calculation.

Version 1.0 25 January, 2001

TCPA Main Specification

4.25 ldentity Structures

Page 62

4.25.1TCPA_IDENTITY_CONTENTS

Start of informative comment:

The TPM_Makeldentity uses this structure and the signature of this structure goes to a privacy CA during

the certification process.

End of informative comment.

Definition

typedef struct tdTCPA | DENTI TY_CONTENTS {
TCPA_VERSI ON ver
Ul NT32 ordi nal ,
Ul NT32 | abel Si ze,
TCPA PUBKEY caPubKey,
TCPA_PUBKEY i dentit yPubKey,

[size_is(label Size)]
} TCPA_| DENTI TY_CONTENTS;

BYTE* identitylLabel;

Parameters

Type Name Description

TCPA_VERSION ver This SHALL be the version specified in section 4.5.

UINT32 ordi nal This SHALL be the ordinal of the TPM_Makeldentity
command.

UINT32 | abel Si ze This SHALL be the size of the identityLabel field

TCPA_PUBKEY CaPubKey This SHALL be the caPubKey field in the calling
TPM_Makeldentity command.

TCPA_PUBKEY i dentityPubKey [This SHALL be the public key structure of the identity key

BYTE* i dentityLabel This SHALL be the label for the identityPubKey

Version 1.0 25 January, 2001

TCPA Main Specification Page 63

4.25.2TCPA_SYMMETRIC_KEY

Definition

typedef struct tdTCPA _SYMVETRI C_KEY {
Ul NT16 si ze;
[size_is(size)] BYTE* data;

} TCPA_SYMVETRI C_KEY;

Parameters

Type Name Description

UINT16 si ze This SHALL be the size of the data parameter in bytes
BYTE* dat a This SHALL be the symmetric key data

Version 1.0 25 January, 2001

TCPA Main Specification Page 64

4.25.3TCPA_IDENTITY_REQ
Start of informative comment:
This structure is sent by the TSS to the Privacy CA to create the identity credential.

End of informative comment.

Definition
t ypedef struct tdTCPA | DENTI TY_REQ {
Ul NT32 asynsi ze;
Ul NT32 synSi ze;
Ul NT32 asymil g;

TCPA_ALGORI THM _PARMS al gorithm
[size_is(asyntize)] BYTE* asynBl ob;
[size_is(synSSize)] BYTE* synBl ob;

} TCPA | DENTI TY_REQ

Parameters

Type Name Description

UINT32 asynti ze This SHALL be the size of the asymmetric encrypted area created
by TSS_CollateldentityRequest

UINT32 synSi ze This SHALL be the size of the symmetric encrypted area created
by TSS_CollateldentityRequest

TCPA_ALGORI al gorithm This SHALL be the parameters for the symmetric algorithm

THM_PARMS

BYTE* asynBl ob This SHALL be the asymmetric encrypted area from
TSS_CollateldentityRequest

BYTE* synBl ob This SHALL be the symmetric encrypted area from
TSS_CollateldentityRequest

Actions

For reasons of interoperability, the asymmetric algorithm SHOULD be RSA with a key length of 2048 bits
and the symmetric algorithm 3DES in CBC mode.

The algParms area MUST contain the IV value for the CBC encryption. The IV MUST be a random nonce
from the TPM RNG.

The use of AES in CBC mode as the symmetric algorithm is encouraged.

Version 1.0 25 January, 2001

TCPA Main Specification

4.25.4TCPA_SYM_IDENTITY_REQ

Start of informative comment:

Page 65

This structure is used during the process 9.3.2 “Collating a Request for a Trusted Platform Module

Identity”

End of informative comment.

Definition

typedef struct tdTCPA _SYM I DENTI TY_REQ {
TCPA_VERSI ON ver;
TCPA_NONCE random
Ul NT32 | abel Si ze;
U NT32 identitySize;
Ul NT32 endor senent Si ze;
Ul NT32 pl atfornSize;
Ul NT32 conformanceSi ze;
TCPA _PUBKEY caPubKey;

[size_is(label Size)] BYTE* | abel Area;

[size_is(identitySize)] BYTE* identityBinding;
[size_is(endorsenent Si ze)] BYTE* endorsenent Credenti al ;
[size_is(platfornsSize)] BYTE* platfornCredential;
[size_is(confornmanceSi ze)] BYTE* conformanceCredenti al ;

} TCPA_SYM | DENTI TY_REQ

Type Name Description

TCPA_VERSION ver This SHALL be the version specified in section 4.5.

TCPA_NONCE Random This SHALL be a nonce that has been created by a
TCPA-protected capability

UINT32 | abel Si ze This SHALL be the size of the label area

UINT32 IdentitySize This SHALL be the size of the identity area

UINT32 endor senment Si ze This SHALL be the size of the endorsement
credential

UINT32 Pl at f or nS5i ze This SHALL be the size of the platform credential

UINT32 conf ormancesSi ze This SHALL be the size of the conformance

credential

TCPA_PUBKEY CaPubKey This SHALL be public key of the CA which will
provide the credential for the identity

BYTE* Label Area This SHALL be the text label for the new identity

BYTE* I dentityBi ndi ng This SHALL be the signature value of
TCPA_IDENTITY_CONTENTS structure from the
TPM_Makeldentity command

BYTE* endor senent Cr edent i al This SHALL be the TPM endorsement credential

BYTE* pl at f or nCr edent i al This SHALL be the TPM platform credential

BYTE* conf or manceCredenti al This SHALL be the TPM conformance credential

Version 1.0 25 January, 2001

TCPA Main Specification Page 66

4.25.5TCPA_ASYM_IDENTITY_REQ

Definition

typedef struct tdTCPA_ASYM | DENTI TY_REQ {
TCPA_SYMVETRI C_KEY sessi onKey;
} TCPA_ASYM | DENTI TY_REQ

Parameters
Type Name Description
TCPA_NONCE Sessi onKey This SHALL be the session key

Version 1.0 25 January, 2001

TCPA Main Specification Page 67

4.25.6 TCPA_ASYM_CA_CONTENTS

Start of informative comment:

This structure contains the symmetric key to encrypt the identity credential.
End of informative comment.

Definition

typedef struct tdTCPA_ASYM CA CONTENTS{
TCPA_SYMVETRI C_KEY sessi onKey;
TCPA DI GEST i dDi gest;

} TCPA_ASYM CA_CONTENTS;

Parameters

Type Name Description

TCPA_NONCE Sessi onKey This SHALL be the session key used by the CA to encrypt
the TCPA_IDENTITY_CREDENTIAL

TCPA DIGEST i dDi gest This SHALL be the digest of the TPM identity public key
that is being certified by the CA

Version 1.0 25 January, 2001

TCPA Main Specification Page 68

4.25.7TCPA_SYM_CA_ATTESTATION

Start of informative comment:

This structure returned by the Privacy CA with the encrypted identity credential.
End of informative comment.

Definition

t ypedef struct tdTCPA _SYM CA ATTESTATI ON {
Ul NT32 credSi ze;
TCPA _ALGORI THM PARMS al gorithm
[size_is(credSize)] BYTE* credential;
} TCPA_SYM CA ATTESTATI ON;)

Type Name Description

UINT32 credSi ze This SHALL be the size of the credential parameter

TCPA_ALGORITHM_ al gorithm This SHALL be the indicator and parameters for the

PARMS symmetric algorithm

BYTE* credenti al This is the result of encrypting
TPM_IDENTITY_CREDENTIAL using the session_key and
the algorithm indicated by sym_alg_id and
sym_alg_parameters

Version 1.0 25 January, 2001

TCPA Main Specification

Page 69

4.26 TCPA_CHANGEAUTH_VALIDATE

Start of informative comment:

This structure provides an area that will stores the new authorization data and the challenger’s nonce.

End of informative comment.

Definition

typedef struct tdTCPA CHANGEAUTH_ VALI DATE {

TCPA_SECRET newAut hSecr et ;

TCPA_NONCE n1,
} TCPA_CHANGEAUTH_VALI DATE;

Parameters

Type Name Description

TCPA_SECRET newAut hSecr et This SHALL be the new authorization data for the target entity
TCPA_NONCE nl This SHOULD be a nonce, to enable the caller to verify that the target

TPM is on-line.

Version 1.0 25 January, 2001

TCPA Main Specification

Page 70

4.27 TCPA_MIGRATIONKEYAUTH

Definition

typedef struct tdTCPA_M GRATI ONKEYAUTH{

TCPA_PUBKEY m grati onKey;

TCPA_DI GEST di gest;
} TCPA_ M GRATI ONKEYAUTH;

Parameters

Type Name Description

TCPA_PUBKEY m grati onKey This SHALL be the public key of the migration facility
TCPA_DIGEST di gest

This SHALL be the digest value of the migration key and tpmProof

Version 1.0 25 January, 2001

TCPA Main Specification

428 TCPA_PROTOCOL_ID
Start of informative comment:

This value identifies the protocol in use.
End of informative comment.
Definition

typedef U NT16 TCPA_PROTOCOL_| D;

TCPA_PROTOCOL_ID Values

Page 71

Value Event Name Comments

0x0001 TCPA_PID_OIAP The OIAP protocol. See 0
0x0002 TCPA_PID_OSAP The OSAP protocol. See 5.2.3
0x0003 TCPA_PID_ADIP The ADIP protocol. See 5.2.6
0X0003 TCPA_PID_ADCP The ADCP protocol. See 5.6

Version 1.0 25 January, 2001

TCPA Main Specification

4.29 TCPA_ENTITY_TYPE

Start of informative comment:

This specifies the types of entity that are supported by the TPM.

End of informative comment.

Definition

typedef U NT16 TCPA_ENTI TY_TYPE;

TCPA_ENTITY_TYPE Values

Page 72

Value Event Name Comments

0x0001 TCPA_ET_KEYSLOT | The entity is a keyslot
0x0002 TCPA_ET_OWNER The entity is the TPM Owner
0x0003 TCPA_ET_DATA The entity is some data
0x0004 TCPA_ET_SRK The entity is the SRK
0x0005 TCPA_ET_KEY The entity is a key

0x0006 TCPA_ET _IDENTITY The entity is a TPM Identity

Version 1.0 25 January, 2001

TCPA Main Specification Page 73

4.30 TCPA_STARTUP_TYPE

Definition
typedef U NT16 TCPA STARTUP_TYPE;

TCPA_ENTITY_TYPE Values

Value Event Name Comments
0x0001 TCPA_ST_CLEAR The TPM is starting up from a clean state
0x0002 TCPA_ST_STATE The TPM is starting up from a saved state

Version 1.0 25 January, 2001

TCPA Main Specification Page 74

4.31 Command Ordinals
Start of informative comment:
The command ordinals provide the index value for each command

End of informative comment.

#defi ne TPM_ORD_O AP 1001
#def i ne TPM_ORD_OSAP 1002
#def i ne TPM_ORD_ChangeAut h 1004
#defi ne TPM_ORD_TakeOwner shi p 1005
#defi ne TPM ORD_ChangeAut hAsyntt ar t 1006
#def i ne TPM_ORD_ChangeAut hAsynFi ni sh 1007
#defi ne TPM ORD_Ext end 1010
#defi ne TPM ORD_Pcr Read 1011
#defi ne TPM ORD_Quot e 1012
#defi ne TPM ORD_Seal 1013
#defi ne TPM_ORD_Unseal 1014
#define TPM ORD DirWiteAuth 1015
#define TPM ORD _Di r Read 1016
#defi ne TPM ORD_UnBi nd 1021
#defi ne TPM ORD_Cr eat eW apKey 1022
#defi ne TPM ORD_Creat eW apKeyToPcr 1023
#defi ne TPM ORD_LoadKey 1024
#defi ne TPM ORD_Evi ct Key 1025
#def i ne TPM_ORD_BackupKey 1026
#def i ne TPM_ORD_LoadBackupKey 1027
#defi ne TPM ORD_Get PubKey 1028
#defi ne TPM ORD _CreateM grationBl ob 1030
#define TPM ORD M grateM grationBl ob 1031
#defi ne TPM ORD_LoadM grati onBl ob 1032
#defi ne TPM ORD_Aut hori zeM gr ati onKey 1033

#defi ne TPM ORD_Creat eMai nt enanceArchive 1034
#def i ne TPM_ORD_LoadMai nt enanceAr chi ve 1035
#define TPM ORD_Ki |l | Mai nt enanceFeat ure 1036

#defi ne TPM ORD_HashAl | 1040
#define TPM ORD _Hashl nit 1041
#defi ne TPM ORD_HashUpdat e 1042
#defi ne TPM ORD_HashFi nal 1043
#def i ne TPM_ORD_HMACAI | 1044
#defi ne TPM _ORD_HMACI ni t 1045
#def i ne TPM_ORD_HMACUpdat e 1046
#def i ne TPM_ORD_HMACFi nal 1047
#define TPM ORD Certi fyKey 1048
#define TPM ORD_Si gn 1050
#define TPM ORD VerifySignature 1051
#def i ne TPM_ORD_Get Random 1060
#define TPM ORD_StirRandom 1061

Version 1.0 25 January, 2001

TCPA Main Specification Page 75

#defi ne TPM_ORD_Sel f Test Ful | 1070
#define TPM ORD_Sel f Test Start up 1071
#define TPM ORD CertifySelfTest 1072
#defi ne TPM ORD_Reset 1100
#defi ne TPM ORD_Owner Cl ear 1101
#defi ne TPM ORD_Di sabl eOwner Cl ear 1102
#defi ne TPM ORD_For ceCl ear 1103
#defi ne TPM ORD_Di sabl eFor ceC ear 1104
#define TPM ORD_Get Capabi | i t ySi gned 1105
#define TPM ORD_Get Capability 1106
#defi ne TPM ORD_Owner Set Di sabl e 1107
#defi ne TPM ORD_Physi cal Enabl e 1108
#defi ne TPM ORD_Physi cal Di sabl e 1109
#defi ne TPM ORD_Creat eEndor senent KeyPair 1200
#defi ne TPM_ ORD_MakeTPM dentity 1201
#define TPM ORD ActivateTPM dentity 1202
#define TPM ORD_Recover TPM dentity 1210
#defi ne TPM ORD_Get Audi t Event 1220
#defi ne TPM ORD_Get Or di nal Audi t St at us 1250
#defi ne TPM ORD_Set Or di nal Audi t St at us 1251
e R LR T
[l TSS ordinals

#define TSS _ORD Encrypt Al |l 5001
#define TSS ORD Encryptlnit 5002
#define TSS_ORD_Encrypt Updat e 5003
#define TSS_ORD _Encrypt Fi nal 5004
#defi ne TSS_ORD Decrypt Al | 5005
#define TSS_ORD Decryptlnit 5006
#define TSS_ORD_Decrypt Updat e 5007
#define TSS_ORD_Decrypt Fi nal 5008

#define TSS ORD Col | atel dentityRequest 5009

#define TSS_ORD_Bi nd 5020
#define TSS_ORD W apKey 5021
#define TSS_ORD W apKeyToPcr 5022
#define TSS_ORD_LogExt endEvent 5100
#define TSS_ORD_Cet Ext endEvent 5101
#define TSS _ORD_Get Ext endEvent Log 5102
#define TSS _ORD_Di sposeEvent Log 5103
#define TSS _ORD_Get Audi t Log 5104

Version 1.0 25 January, 2001

TCPA Main Specification Page 76

5. Authorization and Ownership

5.1 Introduction

Start of informative comment:

The purpose of the authorization mechanism is to authenticate an owner and to authorize use of an
entity. The basic premise is to prove knowledge of a shared secret. This shared secret is the
authorization data.

Authorization data is available for the TPM Owner and each entity that the TPM controls. The
authorization data for the TPM and the SRK are held within the TPM itself and the authorization data for
other entities are held with the entity.

The TPM Owner authorization data allows the Owner to prove ownership of the TPM. Proving ownership
of the TPM does not immediately allow all operations — the TPM Owner is not a “super user’ and
additional authorization data must be provided for each entity or operation that has protection.

For each operation that uses an entity, the requestor must present the authorization data for the entity.

The TPM treats knowledge of the authorization data as complete proof of ownership of the entity. No
other checks are necessary. The requestor (any entity that wishes to execute a command on the TPM or
use a specific entity) may have additional protections and requirements where he or she (or it) saves the
authorization data; however, the TPM places no additional requirements.

There are two protocols to securely pass a proof of knowledge of authorization data from requestor to
TPM; the “Object-Independent Authorization Protocol” (OI-AP) and the “Object-Specific Authorization
Protocol” (OS-AP). The OI-AP supports multiple authorization sessions for arbitrary entities. The OS-AP
supports an authentication session for a single entity and enables the confidential transmission of new
authorization information. That new authorization information is inserted by the “Authorization Data
Insertion Protocol” (ADIP) during the creation of an entity. The “Authorization Data Change Protocol”
(ADCP) and the “Asymmetric Authorization Change Protocol” (AACP) allow the changing of the
authorization data for an entity. The protocol definitions allow expansion of protocol types to additional
TCPA required protocols and vendor specific protocols.

The protocols use a “rolling nonce” paradigm. This requires that a nonce from one side be in use only for
a message and its reply. For instance, the TPM would create a nonce and send that on a reply. The
requestor would receive that nonce and then include it in the next request. The TPM would validate that
the correct nonce was in the request and then create a new nonce for the reply. This mechanism is in
place to prevent replay attacks and man-in-the-middle attacks.

The basic protocols do not provide long-term protection of authorization data that is the hash of a
password or other low-entropy entities. The TPM designer and application writer must supply additional
protocols if protection of these types of data is necessary.

The design criterion of the protocols is to allow for ownership authentication, command and parameter
authentication and prevent replay and man-in-the-middle attacks.

The passing of the authorization data, ronces and other parameters must follow specific guidelines so
that commands coming from different computer architectures will interoperate properly.

End of informative comment.

All protected commands and entity authorizations requiring authorization MUST use the authorization
data protocols.

The TPM MUST support the OI-AP and the OS-AP which enable proof of knowledge of authorization data
while maintaining the secrecy of that authorization data.

The TPM MUST support the ADIP that inserts the authorization during entity creation.
The TPM MUST support the ADCP and AACP which allow for the changing of authorization data.

Version 1.0 25 January, 2001

TCPA Main Specification Page 77

The TPM MUST support TPM_Terminate_Handle which forces the termination of a session.
The TPM MAY support additional protocols to authenticate, insert and change authorization data.

The TPM MUST support the ability to calculate a HMAC in order to verify authorization data independent
of the source or transmission mechanism. The TPM MUST calculate the HMAC parameters from the IDL
representation of the command. The TPM MUST NOT perform the HMAC calculation for a returning
message when the authorization for the command fails.

If a capability has more than one authorization value, each authorization process MUST use all
authenticated parameters in ts HMAC calculation. For example, the capability 9.3.1TPM_Makeldentity
requires authorization from both the TPM Owner and from the SRK owner. So the authentication
information TpmOwnerAuth” and “SrkAuth” are each calculated over all parameters tagged as “AUTH" in
the definition of TPM_Makeldentity.

Version 1.0 25 January, 2001

TCPA Main Specification Page 78

5.2 Authorization protocols

Start of informative comment:

The TPM provides two protocols for authorizing the use of entities without revealing the authorization data
on the network or the connection to the TPM. In both cases, the protocol exchanges nonce-data so that
both sides of the transaction can compute a hash using shared secrets and nonce-data. Each side
generates the hash value and can compare to the value transmitted. Network listeners cannot directly
infer the authorization data from the hashed objects sent over the network.

The first protocol is the “Object-Independent Authorization Protocol” (OI-AP), which allows the exchange
of nonces with a specific TPM. Once an OI-AP session is established, its nonces can be used to
authorize the use any entity managed by the TPM. The session can live indefinitely until either party
request the session termination. The TPM_OIAP function starts the OI-AP.

The second protocol is the “Object Specific Authorization Protocol” (OS-AP)”. The OS-AP allows
establishment of an authentication session for a single entity. The session creates nonces that can
authorize multiple commands without additional session-establishment overhead, but is bound to a
specific entity. The TPM_OSAPStart function starts the OS-AP. The TPM_OSAPStart specifies the entity
to which the authorization is bound.

Most commands allow either form of authorization protocol. In general, however, the OI-AP is preferred —
it is more generally useful because it allows usage of the same session to provide authorization for
different entities. The OS-AP is, however, necessary for operations that set or reset authorization data.

OI-AP sessions were designed for reasons of efficiency; only one setup process is required for potentially
many authorizations.

An OS-AP session is doubly efficient because only one setup process is required for potentially many
authorization calculations and the entity authorization secret is required only once. This minimizes
exposure of the authorization secret and can minimize human interaction in the case where a person
supplies the authorization information. The disadvantage of the OS-AP is that a distinct session needs to
be setup for each entity that requires authorization. The OS-AP creates an ephemeral secret that is used
throughout the session instead of the entity authorization secret. The ephemeral secret can be used to
provide confidentiality for the introduction of new authorization data during the creation of new entities.
Termination of the OS-AP occurs in two ways. Either side can request session termination (as usual) but
the TPM forces the termination of an OS-AP session after use of the ephemeral secret for the introduction
of new authorization data.

For both the OS-AP and the OI-AP, session setup is independent of the commands that are authorized.
In the case of OI-AP, the requestor sends the TPM_OIAP command, and with the response generated by
the TPM, can immediately begin authorizing object actions. The OS-AP is very similar, and starts with the
requestor sending a TPM_OSAPStart operation, naming the entity to which the authorization session
should be bound.

Both session types use a “rolling nonce” paradigm. This means that the TPM creates a new nonce value
each time the TPM uses the session for a HMAC calculation.

Note that some operations involve the use of two authorization elements (for example, UNSEAL requires
the authorization data of the object itself and authorization data of the object’s parent). In this case, two
separate sessions are required. It is not possible to use one session for both purposes.

End of informative comment.

Version 1.0 25 January, 2001

TCPA Main Specification

5.2.1 OI-AP description

Version 1.0 25 January, 2001

TCPA Main Specification

Version 1.0 25 January, 2001

TCPA Main Specification Page 81

End of informative comment.

5.2.2 TPM_OIAP

IDL Definition

TCPA_RESULT TPM O AP(
[in] TCPA_PROTOCOL_ID ProtocollD,
[out] TCPA_AUTHHANDLE* Aut hHandl e,
[out] TCPA_NONCE* nO);

Type
TCPA protected capability.

Parameters
Type Name Description
TCPA_PROTOCOL_ID Prot ocol I D The protocol in use MUST be TCPA_PID_OIAP.

Version 1.0 25 January, 2001

TCPA Main Specification Page 82

TCPA_AUTHHANDLE aut hHandl e Handle that TPM creates that points to the authorization
state. The value is TPM specific and has no meaning
except to identity the session.

TCPA_NONCE NO Nonce generated by TPM and associated with session.

Actions

The TPM_OIAP command allows the creation of an authorization handle and the tracking of the handle
by the TPM. The TPM generates the handle and nonce.

The TPM has an internal limit as to the number of handles that may be open at one time, so the request
for a new handle may fail if there is insufficient space available.

Internally the TPM will do the following:
1. TPM receives command.

2. TPM generates new handle and reserve space to save protocol identification, both nonces and any
other information the TPM needs to manage the session.

3. TPM generates nonce NO.

On each subsequent use of the OIAP session the TPM MUST generate a new nonce value.

Return Value Description

TCPA_SUCCESS Operation completed successfully
TCPA_SIZE There are too many open auth handles
TCPA_FAIL A critical internal error occurred

5.2.3 Authorization using an OI-AP session

Start of informative comment:

This section describes the authorization-related actions of a TPM when it receives a command that has
been authorized with the OI-AP protocol.

Many commands use OI-AP authorization. The following description is therefore necessarily abstract.
End of informative comment.

Actions

On reception of a command with ordinal C1 that uses an authorization session, the TPM SHALL perform
the following actions:

1. The TPM MUST retrieve the secret authorization data (SecretE, say) of the target entity. The
entity and its secret must have been previously loaded into the TPM.

2. The TPM MUST verify that the authorization handle (H, say) referenced in the command points to
a valid session. If it does not, the TPM returns the error code TPM_E_INVALIDAUTH.

The TPM SHALL retrieve the latest version of the caller's nonce (N1, say) from the command.
The TPM SHALL retrieve the latest version of the TPM’s nonce (NO, say) from the command.
The TPM SHALL retrieve the authenticated parameters (X, say) from the command.
The TPM performs a HMAC calculation (HM=HMAC[SecretE, C1, NO, N1, X], say)

o g M w

Version 1.0 25 January, 2001

TCPA Main Specification Page 83

7. The TPM SHALL compare HM to the authorization value received in the command. If they are
different, the TPM returns the error code TPM_E_INVALIDAUTH. Otherwise, the TPM executes
command C1 which produces an output (O, say) that requires authentication and uses a
particular return code (RC, say).

8. The TPM SHALL generate the latest version of its nonce (N2, say).

9. The TPM creates a digest to authenticate the return values and return codes (ReturnDigest =
HMAC [SecretEl, C1, N2, N1, RC, O])

10. The TPM returns the ReturnDigest to the caller along with C1, N2, RC, O and any other outputs
that do not require authentication.

11. The TPM SHALL retrieve the continue flag from the received command. If the flag is FALSE, the
TPM SHALL terminate the session and destroy the thread associated with handle H.

Version 1.0 25 January, 2001

TCPA Main Specification

5.2.4 OS-AP Description

Version 1.0 25 January, 2001

TCPA Main Specification

Version 1.0 25 January, 2001

TCPA Main Specification Page 86

Version 1.0 25 January, 2001

TCPA Main Specification Page 87

5.2.5 TPM_OSAP

Start of informative comment:

The TPM_OSAP command creates the authorization handle, the shared secret and generates NO and
SO.

End of informative comment.
IDL Definition

TCPA_RESULT TPM_OSAP(
[in] TCPA_PROTOCOL_ID ProtocollD,
[in] TCPA ENTITY_TYPE entityType,
[in] U NT32 entityVal ue,
[in] TCPA_NONCE s1,
[out] TCPA AUTHHANDLE* aut hhandl e,
[out] TCPA_NONCE* nO,
[out] TCPA_NONCE* sO0);

Type

TCPA protected capability.

Parameters

Type Name Description

TCPA_PROTOCOL_ID Protocol I D The protocol in use MUST be TCPA_PID_OSAP.

TCPA_ENTITY_TYPE entityType The slot where the private key of the target entity is
loaded. See

UINT32 entityVal ue | The selection value based on entityType

TCPA_NONCE S1 The nonce generated by the caller as part of the shared
secret

TCPA_AUTHHANDLE* aut hHandl e Authorization structure that contains nonces and handle

TCPA_NONCE NO The even numbered nonce that the caller will use in the
HMAC calculation

TCPA_NONCE SO The even numbered nonce that the caller will use to
create the shared secret

Actions

The TPM_OSAP command allows the creation of an authorization handle and the tracking of the handle
by the TPM. The TPM generates the handle and the NO and SO nonces.

The TPM has an internal limit on the number of handles that may be open at one time, so the request for
a new handle may fail if there is insufficient space available.

The TPM_OSAP allows the binding of an authorization to a specific entity. This allows the caller to
continue to send in authorization data for each command but not have to request the information or cache
the actual authorization data.

Internally the TPM will do the following:
1. TPM receives command.

2. TPM generates new handle and reserves space to save protocol identification, shared secret, both
nonces and any other information the TPM needs to manage the session.

Version 1.0 25 January, 2001

TCPA Main Specification Page 88

3. TPM generates nonces NO and SO.

4. TPM generates shared secret HMAC (authorization data, SO, S1) and saves secret in session area.
5. TPM fills in the TCPA_AUTH fields and returns.

Descriptions

entityType = TCPA_ET_KEYSLOT

The entity to authorize is a key slot. entityValue contains the key slot where the key is loaded. Key slot O
identifies the SRK.

entityType = TCPA_ET_OWNER
This value indicates that the entity is the TPM owner. entityValue is ignored.
Usage
On each subsequent use of the OSAP session the TPM MUST generate a new nonce value.
The TPM MUST ensure that OS-AP shared secret is only available while the OS-AP session is valid.
Termination
The session MUST terminate upon any of the following conditions:
The entity is unloaded. For keys this occurs when another key is loaded into the slot.
The entity has a change authorization performed on it.

The session is used in a TPM_ChangeAuth command.

Return Value Description

TCPA_SUCCESS Operation completed successfully
TCPA_SIZE There are too many open auth handles
TCPA_FAIL A critical internal error occurred

5.2.6 Authorization using an OS-AP session
Start of informative comment:

This section describes the authorization-related actions of a TPM when it receives a command that has
been authorized with the OS-AP protocol.

Many commands use OS-AP authorization. The following description is therefore necessarily abstract.
End of informative comment
Actions

On reception of a command with ordinal C1 that uses an authorization session, the TPM SHALL perform
the following actions:

1. The TPM MUST retrieve the shared secret (Shared, say) of the target entity.

2. The TPM MUST verify that the authorization handle (H, say) referenced in the command points to
a valid session. If it does not, the TPM returns the error code TPM_E_INVALIDAUTH.

The TPM SHALL retrieve the latest version of the caller's nonce (N1, say) from the command.
The TPM SHALL retrieve the latest version of the TPM’s nonce (NO, say) from the command.
The TPM SHALL retrieve the authenticated parameters (X, say) from the command.

The TPM performs a HMAC calculation (HM=HMAC][Shared, C1, NO, N1, X], say)

o o M w

Version 1.0 25 January, 2001

TCPA Main Specification Page 89

10.

11.

12.

The TPM SHALL compare HM to the authorization value received in the command. If they are
different, the TPM returns the error code TPM_E_INVALIDAUTH. Otherwise, the TPM executes
command C1 which produces an output (O, say) that requires authentication and uses a
particular return code (RC, say).

The TPM SHALL generate the latest version of its nonce (N2, say).

The TPM creates a digest to authenticate the return values and return codes (ReturnDigest =
HMAC [Shared, C1, N2, N1, RC, O])

The TPM returns the ReturnDigest to the caller along with N2, RC, O and any other outputs that
do not require authentication.

The TPM SHALL retrieve the continue flag from the received command. If the flag is FALSE, the
TPM SHALL terminate the session and destroy the thread associated with handle H.

If the shared secret was used to provide confidentiality for data in the received command, the
TPM SHALL terminate the session and destroy the thread associated with handle H.

Version 1.0 25 January, 2001

TCPA Main Specification Page 90

Version 1.0 25 January, 2001

TCPA Main Specification Page 91

5.3 TPM _Terminate Handle

Start of informative comment:

This allows the TPM manager to clear out information in a session handle
End of informative comment.

IDL Definition

TCPA _RESULT TPM Ter m nat e_Handl e(
[in] TCPA _PROTOCOL_ID protl D,
[in] U NT32 handl e);

Type
TCPA protected capability.

Parameters

Type Name Description

TCPA_PROTOCOL_ID protlD This SHALL indicate what type of handle to terminate.

UINT32 handl e This SHALL be the handle to terminate.

Actions

The TPM SHALL terminate the session and destroy all data associated with the session indicated.

Return Value Description
TCPA_SUCCESS Operation completed successfully
TCPA_FAIL A critical internal error occurred

Version 1.0 25 January, 2001

TCPA Main Specification

5.4 ADIP - Creating a New Entity

Version 1.0 25 January, 2001

TCPA Main Specification Page 93

The TPM MUST enable ADIP by using the OS-AP. The TPM MUST encrypt the authorization data for the
new entity by performing an XOR using the shared secret created by the OS-AP.

The TPM MUST destroy the OS-AP session whenever a new entity is created.

Version 1.0 25 January, 2001

TCPA Main Specification Page 94

5.5 ADCP - Changing Authorization Data

Changing authorization data for the TPM requires authorization of the current TPM Owner.
Changing authorization data for the SRK requires authorization of the TPM Owner.
Changing authorization data for a TPM Identity requires authorization of the TPM Owner.

All other entities require authorization of the parent entity.

Version 1.0 25 January, 2001

TCPA Main Specification Page 95

5.6 TPM_ChangeAuth

Start of informative comment:

The TPM_ChangeAuth command allows the owner of an entity to change the authorization data for the
entity.

End of informative comment.

IDL Definition

TCPA_RESULT TPM ChangeAut h(
[in, out] TCPA AUTH* Par ent Aut h,
[in, out] TCPA AUTH* BI obAut h,
[AUTH, in] TCPA _ENTITY_TYPE Tar get Type,

[AUTH, in] TCPA PROTOCOL_I D Protocol I D,
[AUTH, in] U NT32 Bl obSi ze,
[AUTH, in] U NT32 MaxNewBl obSi ze,

i
i
i
[AUTH, in] TCPA ENCAUTH NewAut h,
i
i
i

[AUTH, in] TCPA KEY_SLOT Parent Ref,
[AUTH, in, out] U NT32* NewBl obSi ze,
[AUTH, in, size_is(BlobSize)] BYTE* Bl ob,

[AUTH, out, size_is(*NewBl obSize)] BYTE* NewBl ob);

Type

TCPA protected capability; user must provide authorizations for the entity pointed to by parentRef and
blob.

Parameters

Type Name Description

TCPA _AUTH Par ent Aut h Authorization structure that contains authorization
data for the parent key.

TCPA _AUTH Bl obAut h Authorization structure that contains authorization
data for the Entity in parameter blob.

TCPA_ENTITY_TYPE Tar get Type What entity to change the authorization data for

TCPA_PROTOCOL_ID Protocol I D The ownership protocol in use.

UINT32 Bl obSi ze Size of the incoming blob.

UINT32 MaxNewBl obSi ze | The maximum size of the data buffer for the out going
blob.

TCPA_ENCAUTH NewAut h This SHALL be the encrypted new authorization data.

TCPA _KEY_SLOT Par ent Ref Reference to the parent of the blob

UINT32* NewBl obSi ze The actual size of the out going blob. Must be smaller
than maxNewBlobSize.

BYTE* Bl ob The entity who'’s authorization needs changing.

BYTE* NewBl ob The new blob.

Version 1.0 25 January, 2001

TCPA Main Specification Page 96

Actions

This section defines the TPM_PID_ADCP protocol. Additional protocols would have different
requirements.

A TPM MUST support TPM_PID_ADCP.

The TPM Owner and the SRK are Internal entities. All others (wrapped key, sealed data) are External
entities.

If the TargetType is TCPA_ET_OWNER or TCPA_ET_SRK

The session pointed to by parentAuth MUST be TCPA_PID_OSAP using the TPM Owner authorization
data. The newAuth parameters MUST point to the new authorization data, and are protected according to
the ADIP protocol (XORed with the TCPA_PID_OSAP shared secret that is based on the TPM Owner’s
authorization data)

The TPM MUST ignore all other parameters.

The TPM MUST enforce the destruction d the parentAuth session upon completion of this command
(successful or unsuccessful).

If TargetType is TCPA_ET_DATA, TCPA_ET_KEY or TCPA_ET_IDENTITY

The session pointed to by parentAuth MUST be an TCPA_PID_OSAP using the Parent Entity's
authorization data. The newAuth parameter MUST point to the new authorization data, and is protected
according to the ADIP protocol (XORed with the TCPA_PID_OSAP shared secret that is based on the
parent entity’s authorization data).

When TargetType is TCPA_ET_IDENTITY, the parentAuth session MUST be a TCPA_PID_OSAP using
the TPM Owner authorization data.

The TPM MUST validate the command using the authorization data in the parentAuth parameter. The
parentRef parameter provides the identification of the parent.

After validation the TPM attempts to decrypt the blob using the key pointed to by ParentRef. The TPM
then attempts to validate that the decrypted blob is a valid structure. Then the TPM authorizes the use of
the decrypted entity using the authorization in the blobAuth parameter.

Failure to validate either of these entities results in the TPM returning an error code to the caller.

The TPM then decrypts the newAuth parameter (using the authorization data of the entity pointed to by
ParentRef) and replaces the authorization data in the decrypted blob with the new decrypted value. The
TPM then encrypts the blob using the parent and places the result in the newBlob area. The newAuth
area is encrypted using the ADIP mechanism.

The TPM MUST enforce the destruction of the TCPA_PID_OSAP session upon completion of this
command (successful or unsuccessful).

Return Value Description
TCPA_SUCCESS Operation completed successfully
TCPA_FAIL A critical internal error occurred

Version 1.0 25 January, 2001

TCPA Main Specification Page 97

5.7 Asymmetric Authorization Change Protocol

5.7.1 TPM_ChangeAuthAsymStart

IDL Definition

TCPA _RESULT TPM ChangeAut hAsyntt art (
[in, out] TCPA AUTH* | DAut h,
[AUTH, in] TCPA KEY_SLOT idSlot,
[AUTH, in] TCPA _KEY_SLOT ephSl ot,
[AUTH, in] U NT32 nmaxSi gSi ze,
[AUTH, in, out] UINT32* sigSize,
[AUTH, in, out] TCPA KEY* tenpkey,
[AUTH, out] TCPA_CERTIFY_I NFO* certifylnfo,
[AUTH, out, size_is(*sigSize)] BYTE* signature);

Type
TCPA protected capability; user must provide authorization for the identity in idSlot.

Parameters

Version 1.0 25 January, 2001

TCPA Main Specification

Page 98

Type Name Description

TCPA_AUTH* | DAut h Authorization structure that contains authorization data for the
TPM Identity. For this parameter, the Authorization Type
MUST be OI-AP.

TCPA_KEY_SLOT | i dSl ot This SHALL be the key slot where the identity is loaded. This
MUST be a TPM identity key.

TCPA_KEY_SLOT | ephSl ot This SHALL indicate the key slot to hold the ephemeral key

UINT32

maxSi gSi ze

This SHALL be the maximum size of the signature parameter

UINT32*

si gSi ze

This SHALL be the size of the signature parameter

TCPA_KEY*

t empKey

The input structure contains all parameters except pubkey and
privkey (which are NULL), to specify the size and type of
ephemeral key. The output structure also contains pubkey (the
public part of the new ephemeral key). The privkey field in the
output structure is NULL.

TCPA_CERTIFY_|
NFO

certifylnfo

This SHALL be the TCPA_CERTIFY_INFO structure that is
signed.

BYTE*

si gnature

This SHALL be the signature on the certifylnfo parameter
using the key in idSlot.

Actions

The TPM SHALL verify the authorization to use the TPM identity key held in idSlot. The TPM MUST
verify that the key is a TPM identity key.

The TPM SHALL validate the algorithm parameters for the key to create from the tempKey
parameter. The minimum RSA key size MUST be 512 bits.

The TPM SHALL create a new key from the tempKey parameters and associate the internal storage
of this newly created key with the OI-AP session handle provided by IDAuth parameter.

The TPM SHALL fill in the TCPA_PUBKEY section of the tempKey parameter. The TPM MUST set
the TCPA_PRIVKEY section to null.

The TPM SHALL fill in the TCPA_CERTIFY_INFO structure for the newly created key. This structure
SHALL be returned in parameter certifylnfo. See below for field values.

The TPM then performs a TPM_Internal_Signature (See 8.16.2) on the certifylnfo parameter using

the key pointed to by idSlot. The resulting signed blob is returned in signature parameter.

Field Descriptions for certifylnfo parameter

Name Description

Ver si on TCPA version structure; section 4.5.
Keyfl ags. | sWappedToPCR This SHALL be set to FALSE.
Keyfl ags. Redi rection This SHALL be set to FALSE.
Keyfl ags. M grat abl e This SHALL be set to FALSE.
Keyfl ags. Vol atile This SHALL be set to TRUE.

Keyfl ags. M gration This SHALL be set to FALSE.

Version 1.0 25 January, 2001

TCPA Main Specification

Page 99

pcrLi st This SHALL be an empty list.
typeOr Key This SHALL be set to algorithm in use
typeTag This SHALL reflect the newly created key algorithm information.

aut hDat aUsage

This SHALL be set to TPM_AUTH_ALWAYS.

KeyUsage This SHALL be set to TPM_KEY_AUTHCHANGE

Di gest Val ue This SHALL be set to NULL

pubDi gest This SHALL be the hash of the public key being certified.
Dat a This SHALL be set to NULL

Return Value

Description

TCPA_SUCCESS

Operation completed successfully

TCPA_FAIL

A critical internal error occurred

Version 1.0 25 January, 2001

TCPA Main Specification Page 100

5.7.2 TPM_ChangeAuthAsymFinish

Start of informative comment:

The TPM_ChangeAuth command allows the owner of an entity to change the authorization data for the
entity. It must use the same OI-AP session as its twin TPM_ChangeAuthAsymStart command.

The command requires the cooperation of the owner of the parent of the entity, since authorization must
be provided to use that parent entity. The command requires knowledge of the existing authorization
information and passes the new authorization information. The “Bl obAut h” parameter proves
knowledge of existing authorization information and new authorization information. The new authorization
information “encNewAut h” is encrypted using the “tempKey” variable obtained via
TPM_ChangeAuthAsymStart.

A parent therefore retains control over a dange in the authorization of a child, but is prevented from
knowing the new authorization data for that child.

End of informative comment.
IDL Definition

TCPA_RESULT TPM ChangeAut hAsynti ni sh(
[in, out] TCPA_AUTH* Parent Aut h,
[AUTH, in] TCPA_ENTI TY_TYPE Target Type,

[AUTH, in] Ul NT32 Bl obSi ze,
[AUTH, in] U NT32 MaxNewBl obSi ze,
[AUTH, in] U NT32 NewAut hSi ze,

[
[
[
[AUTH, in] TCPA KEY_SLOT Parent Ref,
[
[
[
[

[AUTH, in] TCPA DI GEST Bl obAut h,

[AUTH, in, size_is(NewAuthSize)] BYTE* encNewAut h,
[AUTH, in, size_is(BlobSize)] BYTE* Bl ob,

[AUTH, in, out] U NT32* NewBl obSi ze,

[AUTH, out] TCPA DI GEST* ChangePr oof,
[AUTH, out, size_is(*newBl obSize)] BYTE* NewBl ob);

Type

TCPA protected capability; caller must provide authorizations for the entity pointed to by parentRef and
blob.

Parameters

Type Name Description

TCPA_AUTH Par ent Aut h Authorization structure that contains authorization data for
the parent key.
The OI-AP session MUST be the same session as the one
used in TPM_ChangeAuthAsymStart command that created
the public key used to encrypt the contents of the NewAuth
parameter.

TCPA ENTITY_T | Target Type The type of the entity in ‘Bl ob” whose authorization is to be

YPE changed.

UINT32 Bl obSi ze Size of the incoming blob.

UINT32 MaxNewBl obSi ze | The maximum size of the data buffer for the outgoing blob.

UINT32 NewAut hSi ze The size of the new authorization data.

Version 1.0 25 January, 2001

TCPA Main Specification

Page 101

TCPA_KEY_SLOT | Par ent Ref Reference to the parent of the blob

TCPA_DIGEST Bl obAut h A HMAC that links the old authorization data with the new
authorization data. See below.

BYTE* encNewAut h The new authorization data structure encrypted under the
public key associated with the OI-AP session.

BYTE* Bl ob The entity whose authorization needs changing.

UINT32* NewBl obSi ze The actual size of the out going blob.

TCPA_DIGEST* ChangePr oof This SHALL contain a cryptographic proof that the
authorization data changed.

BYTE* NewBl ob The new blob.

Actions

The TPM SHALL validate that the ParentAuth parameter authorizes use of the key in parentRef.

The TPM SHALL validate that the session in use by ParentAuth is managing an active and valid
TPM_KEY_AUTHCHANGE key.

The TPM SHALL decrypt the entity held in the Blob parameter and validate the structure of the
decrypted entity.

The TPM SHALL decrypt the encNewAuth blob using the private key of the
TPM_KEY_AUTHCHANGE key pair. The decrypted area contains a structure newAuth of type
TCPA_CHANGEAUTH_VALIDATE.

The TPM SHALL create blobverify by performing the following HMAC calculation: blobverify = HMAC(
newAuth.newAuthSecret) using blob.currentAuth as the secret. Where the currentAuth is the current
shared authorization secret and the newAuth.newAuthSecret area is the new shared authorization
secret.

The TPM SHALL compare the blobverify value with the BlobAuth parameter. The TPM SHALL
indicate a failure if the values do not match.

The TPM SHALL replace decryptedblob.authdata with newAuth.newAuthSecret.

The TPM SHALL encrypt the decryptedblob structure using the appropriate wrap command with the
key in ParentRef.

The TPM SHALL create ChangeProof parameter by creating an HMAC. ChangeProof =
HMAC(newAuth.newAuthSecret, newAuth.noncel). Where the newAuth parameter is the new shared
authorization secret and noncel is the nonce.

The TPM MUST destroy the TPM_KEY_AUTHCHANGE key associated with the OI-AP session.

Return Value

Description

TCPA_SUCCESS

Operation completed successfully

TCPA_FAIL

A critical internal error occurred

Version 1.0 25 January, 2001

TCPA Main Specification Page 102

5.8 Authorization Data

The TPM MUST reserve 160 bits for the authorization data. The TPM treats the authorization data as a
blob. The TPM MUST keep the authorization data in a shielded location.

The TPM MUST enforce that the only usage in the TPM of the authorization data is to perform
authorizations.

5.9 Nonces

The requestor MUST provide a unique value in the nonce field of the authorization structure for each
request.

The TPM MUST supply a new nonce value for each reply. The nonce value MUST come from the internal
RNG. The TPM MUST enforce the validity of the returning nonce another command uses the
authorization session.

Version 1.0 25 January, 2001

TCPA Main Specification Page 103

5.10 Authorization Handle

The TPM MUST support authorization handles. The TPM MUST support a minimum of two concurrent
authorization handles.

The TPM MUST support authorization-handle termination. The termination includes garbage collection of
authorization data.

Version 1.0 25 January, 2001

TCPA Main Specification Page 104

5.11 HMAC Calculation

The TPM MUST support the calculation of an HMAC according to RFC 2104.

The key size (K in RFC 2104) MUST be 20 bytes. The block size (B in RFC 2104) MUST be 64 bytes.

When a command has two HMAC calculations (i.e. it has two TCPA_AUTH parameters) then BOTH

calculations MUST use the same parameters and nonces. The only difference between the two
calculations is the secret.

The order of the parameters is critical to the TPM'’s ability to recreate the HMAC. Not all of the fields are
sent on the wire for each command for instance only one of the nonce values travels on the wire. The text
field follows the following construction format:

The authorization data for the entity to release. The authorization data is the shared secret that both
sides of the conversation are trying to prove knowledge of.

Command ordinal

TCPA_AUTH fields excluding the nonce value

Even Nonce (from TPM)

Odd Nonce (from requestor)

On return the return code is included the calculation.

Parameters from the command selected fom the left of the definition. Those commands that are
security sensitive have the AUTH decoration in the IDL fields.

Version 1.0 25 January, 2001

TCPA Main Specification Page 105

5.11.1HMAC Long Parameters

The HMAC calculation MUST use a 20-byte hash value instead of the actual parameter value for all
parameters with a length greater than 128 bytes.

The TPM MUST perform the hash operation and validate the HMAC calculation before using an individual
parameter.

Version 1.0 25 January, 2001

TCPA Main Specification Page 106

5.12 TPM Ownership

The TPM MUST ship with no Owner installed. The TPM MUST use the ownership-control protocol.

Version 1.0 25 January, 2001

TCPA Main Specification Page 107

5.12.1TPM_TakeOwnership
IDL Definition

TCPA RESULT TPM TakeOanership (
[in, out] TCPA AUTH* aut h,

[AUTH, in] U NT32 ProtocollD,
[AUTH, in] TCPA_ENCAUTH EncOwner Aut h,
[AUTH, in] TCPA_ENCAUTH EncSr kAut h,
[AUTH, in, out] TCPA_KEY* SrkPub);
Type
TCPA protected capability; user must encrypt the values using the PUBEK.
Parameters
Type Name Description
TCPA_AUTH* aut h The authorization from the TPM Owner. There is no
validation of in parameters, just validation on the return
that the proper authorization data was used.
UINT32 Prot ocol I D The ownership protocol in use. The default protocol for

version 1.0 is TPM_PRT_OWNER.

TCPA_ENCAUTH

EncOaner Aut h

The encrypted Owner authorization data

TCPA_ENCAUTH

EncSr kAut h

The encrypted Storage Root Key (SRK) authorization data

TCPA_KEY Sr kPub The input structure contains all parameters except pubkey
and privkey (which are NULL), to specify the size and type
of SRK. The output structure also contains pubkey (the
public part of the SRK). The privkey field in the output
structure is NULL.

Actions

The new owner MUST encrypt the Owner authorization data and the SRK authorization data using the
PUBEK. The endorsement key pair MUST be an RSA key so the encryption algorithm in use to encrypt
these secrets is RSA.

If the TPM has a current owner then the TPM upon receipt of this command SHALL return the error code
TCPA_OWNER_SET.

If the TPM has no current owner then the TPM upon receipt of this command SHALL:
1. Decrypt EncOwnerAuth using the PRIVEK to generate ProspectiveOwnerAuth.

2. Use the TCPA authorization protocol to verify that all input parameters tagged with AUTH have
been sent by an entity that knows ProspectiveOwnerAuth. If any verification fails, abandon this
process and do not return a value to the caller. Otherwise, continue with this process.

Store ProspectiveOwnerAuth as the Owner’s authorization data.

Generate a new SRK. The SRK MUST be a 2048 bit RSA key.

Decrypt EncSrkAuth using the PRIVEK and store the result as the SRK’s authorization data.
Return the public part of the SRK to the caller.

N o o M w

Calculate an authenticated response using the new authorization data

Version 1.0 25 January, 2001

TCPA Main Specification

Page 108

Return Value

Description

TCPA_SUCCESS

Operation completed successfully

TCPA_OWNER_SET

There is already an Owner and we do not want a new one

TCPA_FAIL

A critical internal error occurred

Version 1.0 25 January, 2001

TCPA Main Specification Page 109

6. Integrity Collection and Reporting

6.1 Introduction

Version 1.0 25 January, 2001

TCPA Main Specification Page 110

6.2 Platform Configuration Registers

6.2.1 Format and Properties

A Platform Configuration Register (PCR) consists of a 160-bit field that holds acumulatively updated
hash value and a 4byte status field. The PCR data structure MUST be a TCPA-shielded location. PCRs
SHOULD be in volatile storage. The PCRs MUST be set to 0 before first use. This specification does not
mandate the internal storage format.

A TPM implementation MUST provide eight or more independent PCRs. These PCRs are identified by
index and MUST be numbered from O (that is, PCRy through PCR; are required for TCPA compliance).
Vendors MAY implement more registers for general-purpose use. Extra registers MUST be numbered
contiguously from 8 up to max — 1, where max is the maximum offered by the TPM.

The TCPA-protected capabilities that expose and modify the PCRs use a 32-bit index, indicating the
maximum usable PCR index. However, TCPA reserves register indices 2° and higher for later versions of
the sdoecification. A TPM imglementation MUST NOT provide registers with indices greater than or equal
to 2. The register index 2°-1 is used as a wildcard identifier for TPM_Seal and TPM_Unseal; it does not
identify an actual PCR. In this specification, the following terminology is used (although this internal
format is not mandated).

6.2.2 Initialization

PCRs and the protected capabilities that operate upon them MAY NOT be used until power-on self-test
(TPM POST) has completed. If TPM POST fails, the TPM_Extend operation will fail; and, of greater
importance, the TPM_Quote operation and TPM_Seal operations that respectively report and examine
the PCR contents MUST fail. At the successful completion of TPM POST, all PCRs MUST be set to 0.
Additionally, the UINT32 flags MUST be set to zero.

6.2.3 Authorized PCRs

A TPM MUST provide one Data Integrity Register (DIR). Implementations MAY provide more. These
registers MUST hold 160-bit values and MUST be held in TCPA-shielded locations. Further, these
registers MUST be non-volatile (values are maintained during the power-off state). A TPM implementation
need not provide the same number of DIRs as PCRs.

Version 1.0 25 January, 2001

TCPA Main Specification Page 111

6.3 Operations Supporting Integrity Collection and Reporting

6.3.1 TPM_Extend

The TPM_Extend operation MUST be the only operation that can modify PCR contents (beyond internal
POST code and register initialization, which also happens only during POST).

IDL Definition

TCPA_RESULT TPM Ext end(
[in] TCPA_PCRI NDEX Pcrnum
[in] TCPA DI GEST I nDi gest,
[out] TCPA_PCRVALUE* CQutDi gest);

Type

TCPA protected capability.

Parameters

Type Name Description

TCPA_PCRINDEX Pcrnum Index of the PCR to be modified

TCPA_DIGEST InDigest Any 160-bit value representing the event to be recorded

TCPA_PCRVALUE* | OutDigest Pointer to a DIGEST-sized memory location that is updated by the
TPM_Extend operation to be the contents of the named PCR
when internal processing is complete. If this parameter is NULL,
no value is returned. If the TPM is disabled, NULL is returned.

Actions

The TPM_Extend operation performs a TCPA-defined one-way operation on the contents of the named
PCR. The operation is computationally unfeasible to reverse. TPM_Extend MUST form an internal data
structure consisting of the current value of PCRjngex COncatenated with the event parameter in a TCPA-
shielded location (to form a 320-bit data structure, with the current PCR contents first and the event
second). The TPM MUST then calculate the SHA-1 hash of the composite structure and MUST store the
resulting value back in PCRjpgex-

Here is this operation represented in pseudocode:
TCPA PCRVALUE = SHA-1 (cat (TCPA PCRVALUE , Event))

The SHA-1 operation is defined in section 10, “Conformance Criteria.”

The TPM_Extend operation will succeed and its internal actions will be performed even if the
TCPA_PERSISTENT_FLAG disable or the TCPA VOLATILE_FLAG deactivated is TRUE. However, if
the TPM is disabled or deactivated, NULL is returned for PcrFinal, and all operations that attempt to read
this value will fail with TCPA_DISABLED.

The TPM_Extend operation operates normally if the TPM is not yet initialized.

Return Value Description

TCPA_SUCCESS Operation completed successfully
TCPA_BADINDEX PCR index does not exist
TCPA_FAIL A critical internal error occurred

Version 1.0 25 January, 2001

TCPA Main Specification Page 112

6.3.2 TPM_PcrRead

The TPM_PcrRead operation provides non-cryptographic reporting of the contents of a named PCR.

IDL Definition

TCPA_RESULT TPM Pcr Read(
[in] TCPA_PCRI NDEX Pcrnum
[out] TCPA PCRVALUE* QutDi gest);

Type
TCPA protected capability

Parameters
Type Name Description
TCPA_PCRINDEX Pcrnum Index of the PCR to be read

TCPA_PCRVALUE * OutDigest The current contents of the named PCR

Actions

The TPM_PcrRead operation returns the current contents of the named register and its flags to the caller.

Return Value Description

TCPA_SUCCESS Operation completed successfully
TCPA_BADINDEX PCR index does not exist
TCPA_BAD_PARAMETER One or more parameters is bad

TCPA_FAIL POST failed, or another critical error occurred
TCPA_DISABLED The TPM is disabled

Version 1.0 25 January, 2001

TCPA Main Specification Page 113

6.3.3 TPM_Quote

The TPM_Quote operation provides cryptographic reporting of PCR values. A loaded identity key is
required for operation. TPM_Quote uses an identity key to sign a statement that names the current value
of a chosen PCR and externally supplied data (which may be a nonce supplied by a Challenger).

TPM_CERTIFYKEY and TPM_Quote are the only operations that use TPM identity keys apart from those
operations used to acquire identities.

IDL Definition

TCPA_RESULT TPM_Quot e(
[in, out] TCPA AUTH* Auth,
[AUTH, in] U NT32 SigBl obMaxSi ze,
[AUTH, in] TCPA_PCR_SELECTI ON target PCR,
[AUTH, in] TCPA_KEY_SLOT Keyl,
[AUTH, in] TCPA_DI GEST External Dat a,
[AUTH, in, out] U NT32* SigBlobSize,
[AUTH, out] TCPA_PCR_COWPOSI TE* Pcr Dat a
[AUTH, out, size_is(*SigBlobSize), out] BYTE* SigBlob);

Type

TCPA protected capability; user must provide authorization to use the key indicated by the keyl
parameter.

Parameters

Type Name Description

TCPA_AUTH Auth Authorization data for the identity key used for
the signing operation.

UINT32 SigBlobMaxSize Maximum permissible size of the signature blob

TCPA_PCR_SELECTION targetPCR This SHALL be the indication of which PCR
registers are active in this quote operation

TCPA_KEY_SLOT Keyl This SHALL be the slot identifier of the key to
provide the quote

TCPA _DIGEST ExternalData 160 bits of externally supplied data (typically a
nonce provided by a server to prevent replay-
attacks)

UINT32* SigBlobSize Set to the size of the returned signature blob

TCPA_PCR_COMPOSITE pcrData This SHALL be the digest values of all the
active PCR registers selected for the quote
operation

BYTE* SignatureBlob Pointer to memory that is to receive the signed
data blob

Actions

The TPM MUST validate the authorization to use the key pointed to by keyl.

The TPM MUST check that the targetPCR parameter is a consistent TCPA_PCR_SELECTION structure.
If not, the TPM MUST return the error code TCPA_BADINDEX.

Version 1.0 25 January, 2001

TCPA Main Specification Page 114

If the targetPCRSize parameter value is 0x00, the TPM MUST return the error code
TCPA_BADINDEX.

If the targetPCRSize parameter value is not 0x00, the TPM_Quote operation SHALL:

1. Assemble a TCPA_PCR_COMPOSITE data structure in a TPM-shielded location. The PCR
indices in the TCPA_PCR_COMPOSITE structure SHALL be the same as those in the targetPCR
parameter. This TCPA_PCR_COMPOSITE data structure SHALL be returned by the call.

2. Create a TCPA_COMPOSITE_HASH structure as described in section 10.4.5, using the
TCPA_PCR_COMPOSITE structure as an input.

3. Incorporate the TCPA_COMPOSITE HASH, information about the type of operation
(TPM_QUOTE), version information, and the ExternalData parameter into a
TCPA_QUOTE_INFO structure.

4. Sign the TCPA_QUOTE_INFO structure, using SHA-1 for hashing and the Keyl parameter as
the encryption key.

5. Return the resulting signature value in SignatureBlob.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_BADINDEX PCR index does not exist.

TCPA_INVALID_HANDLE The key handle does not refer to an active identity key handle.
TCPA_BAD_PARAMETER One or more parameters are invalid.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.
TCPA_DISABLED The TPM is disabled.

Version 1.0 25 January, 2001

TCPA Main Specification Page 115

6.3.4 TSS_LogExtendEvent

IDL Definition

TCPA _RESULT TSS_LogExt endEvent (
[in] TCPA_PCRI NDEX Pcr,
[in] TCPA_PCRVALUE Pcr Val ue,
[in] U NT32 Event Type,
[in] U NT32 EventSi ze,
[in, size_is(EventSize)] BYTE* Event,
[out] UINT32* Event Nunber);

Type
TSS function

Parameters

Type Name Description

TCPA_PCRINDEX Pcr PCR with which the event should be associated

TCPA_PCRVALUE PcrValue Parameter passed to the corresponding TPM_Extend
operation

UINT32 EventType Type of event. TCPA defines certain events and reserves
others. The EventType parameter specifies the form of the
supporting event information to make interpretation easier.

Version 1.0 25 January, 2001

TCPA Main Specification Page 116

UINT32 EventSize Size of the data structure containing the supporting
information in bytes

BYTE* Event Pointer to an opaque data structure that provides the
supporting information for an event

UINT32* EventNumber The number of the event just logged. The TSS numbers
events for each PCR monotonically from 0 (i.e., events
associated with each PCR are separately numbered from
0).

Actions

The TSS_LogExtendEvent operation MUST add supporting information for the named TPM_Extend event
to the end of TSS event log. The TSS MUST maintain an array of event-supporting data with events
identified by the register to which they belong and the order in which the events occurred. The log need
not be in a TCPA-shielded location, and the TSS_ LogExtendEvent action need not be a TCPA-protected
capability. The TSS MUST NOT impose arbitrary size limitations on the size of the event log. The event
log size should be limited by physical memory, memory accessible in the given operating mode, or
memory allocated to the log by system firmware or other software.

It is anticipated that upper-level software will make a copy of needed event data and will dispose of the
logs once copies are made. In all cases, ExtendValue should be the actual digest-sized event passed to
TPM_Extend.

Return Value Description

TCPA_SUCCESS Operation completed successfully
TCPA_BADINDEX PCR index does not exist
TCPA_BAD_PARAMETER *Action is not readable
TCPA_RESOURCES The event log is full

Version 1.0 25 January, 2001

TCPA Main Specification Page 117

6.3.5 TSS_GetExtendEvent

Start of informative comment:

TSS_GetExtendEvent is used to retrieve events logged with TSS_LogExtendEvent.
TSS_GetExtendEvent need not be a TCPA-protected capability, and the log events retrieved need not be
in TCPA-shielded locations. TSS_GetExtendEvent returns the event type reported to
TSS_LogExtendEvent, the DIGEST-sized event passed to TPM_Extend, the opaque data blob provided
as supporting information for the event, and its length.

TSS_GetExtendEvent is not a TCPA-protected capability and does not access shielded data; hence, it
cannot be protected against unauthorized access by the procedures available in this specification.
However, TSS implementors may choose to provide their own restrictions against unauthorized access.

End of informative comment.

IDL Definition

TCPA_RESULT TSS_Cet Ext endEvent (
[in] TCPA _PCRI NDEX Pcr,
[in] U NT32 Event Number,
[in] U NT32 Event MaxSi ze,
[in, out] U NT32* EventSi ze,
[out] UINT32* Event Type,
[out] TCPA _PCRVALUE* Pcr Val ue,
[out, size_is(*EventSize)] BYTE* Event);

Type

TSS function

Parameters

Type Name Description

TCPA_PCRINDEX Pcr PCR for which the event is being queried

UINT32 EventNumber Index of event required. Events are numbered from O to 1 —
the number of events logged on the named PCR

UINT32 EventMaxSize Maximum acceptable size of the event data to be returned
in bytes. If this parameter is zero, no actual data will be
written into *Data, but the *Size parameter will be set to the
size of the buffer required.

UINT32* EventSize Actual size of the event data returned in bytes, or size of the
data buffer required

UINT32 EventType The type of the event

TCPA_PCRVALUE* PcrValue Event parameter passed to TPM_Extend

BYTE* Event Pointer to a memory location that will be filled with the
opaque binary data describing the event

Actions

The TSS_GetExtendEvent operation retrieves events previously logged using TSS_LogExtendEvent. The
format of the data returned is identical to that previously logged. This operation interface retrieves log

Version 1.0 25 January, 2001

TCPA Main Specification Page 118

entries by index. On TSS initialization (or following a TSS_DisposeEventLog call), the event log for each
PCR is empty. The first event logged to a register is numbered 0, the next is numbered 1, and so on.
Attempts to receive log items beyond the end of the log return an error.

Note that that the event log is required to be accessible in the form of an array (whose properties are
defined in section 6.3.6). TSS implementation MAY choose to provide supplemental data structures to
make random array access through TSS_GetExtendEvent more efficient.

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_BADINDEX PCR index does not exist

TCPA_BADEVENT The numbered event does not exist

TCPA BAD_PARAMETER One or more parameters are invalid

TCPA_BUFSIZE The size specified in MaxSize is not large enough to hold the
event data structure. If this error is returned, *Size is still set to the
buffer size required.

Version 1.0 25 January, 2001

TCPA Main Specification Page 119

6.3.6 TSS_GetExtendEventLog
Start of informative comment:

TSS_GetExtendEventLog returns a selected event from the log of all events since the TPM was initialized
or since TSS_DisposeEventLog (defined next) was called. The data structure returned is an array of
TCPA PCR_EVENT data structures. The array elements are of variable size, and the
TCPA _PCR_EVENT structure defines the size of the current event and the register with which it is
associated. This data structure is not required to be thread-safe, so upper-level software should ensure
that it is not modified during parsing. The array terminator is a defined sentinel. If the event log is kept in a
TCPA-shielded location, then a copy must be made in an unprotected area that can be traversed by non-
TPM protected calling code.

TSS_GetExtendEventLog is not a TCPA-protected capability and does not access shielded data; hence,
it cannot be protected against unauthorized access by the procedures available in this specification.
However, TSS implementors may choose to provide their own restrictions against unauthorized access.

End of informative comment.

IDL Definition

TCPA _RESULT TSS_Get Ext endEvent Log(
[out] UINT32* Log);

Type
TSS function.

Parameters

Type Name Description

UINT32* Log The operation sets this pointer to point to the head of the
event log list data structures.

Events are variably sized. The size of each event, including that of the Length and PCRIndex parameters,
is specified in the TCPA_PCR_EVENT.Length parameter. The Event variable-sized array is the event
data itself, and the PCRIndex is the register to which the event relates.

The whole event log is returned as a pointer to an array of these variably sized TCPA_PCR_EVENT
structures. Individual TCPA_PCR_EVENT items are BYTE-aligned. The event log is terminated by a
TCPA_PCR_EVENT element in which the TCPA_PCR_EVENT.Index is zero. The head of the array is
returned using the TSS_GetExtendEvent call.

Actions

This command returns to the caller the complete event log.

Return Value Description

TCPA_SUCCESS Operation completed successfully.
TCPA_BAD_PARAMETER EventLogHead is NULL or memory is not writable.
TCPA_FAIL A critical system error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 120

6.3.7 TSS_DisposeEventLog

Start of informative comment:

The TSS_DisposeEventLog operation instructs the TSS to dispose of the event logs for all registers and
optionally free memory in use. Calls to query the event log after TSS_DisposeEventLog will indicate an
empty log. Upper-level software may still log new events to the TSS, although this is unlikely to be useful,
since partial logs are difficult to interpret. It is instead anticipated that upper-level software will maintain a
copy of this pre-OS event log and dispose of the original.

End of informative comment.

IDL Definition
TCPA RESULT TSS _Di sposeEvent Log();

Type
TSS function

Parameters

Type Name Description

None

Actions

DISPOSE_EVENT_LOG empties all logs entries for all registers, and optionally frees memory associated
with the data structures. It has no effect on the PCRs themselves.

Return Value Description
TCPA_SUCCESS Operation completed successfully.
TCPA_FAIL A critical system error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 121

6.3.8 TPM_DirWriteAuth

Start of informative comment:

The TPM_DirWriteAuth operation provides write access to the Data Integrity Registers. DIRs are non-
volatile memory registers held in a TCPA-shielded location. Owner authentication is required to authorize
this action. TCPA version 1.0 requires only one DIR. If the DIR named does not exist, the TPM_DirRead
operation returns TCPA_BADINDEX.

End of informative comment.
IDL Definition

TCPA_RESULT TPM Di r Wit eAut h(
[in, out] TCPA _AUTH* Owner Aut h,
[AUTH, in] TCPA_DI RI NDEX DI Ri ndex,
[AUTH, in] TCPA DI RVALUE NewContents);

Type

TCPA protected capability; the user must provide authorization from the TPM Owner to execute function.
Parameters

Type Name Description

TCPA_AUTH* OwnerAuth Owner-authentication data for an active session.
TCPA_DIRINDEX DIRindex Index of the DIR.

TCPA_DIRVALUE NewContents Value to be stored in the named DIR.

Actions

This is an Owner-authenticated action. In order to perform this action, software must have a valid Owner
session. TPM_DirWriteAuth dlows the Owner, after authentication, to write a new value into the named
DIR.

Return Value Description

TCPA_SUCCESS Operation completed successfully.
TCPA_BADINDEX The DIR index does not exist.

TCPA_AUTHFAIL Authentication failed.

TCPA_FAIL An internal error occurred, or an earlier self-test failed.
TCPA_DISABLED The TPM is disabled.

Version 1.0 25 January, 2001

TCPA Main Specification

6.3.9 TPM_DirRead

Start of informative comment:

Page 122

The TPM_DirRead operation provides read access to the DIRs. No authentication is required to perform
this action because typically no cryptographically useful authorization data is available early in boot. TSS
implementors may choose to provide other means of authorizing this action. TCPA version 1.0 requires
only one DIR. If the DIR named does not exist, the TPM_DirRead operation returns TCPA_BADINDEX.

End of informative comment.

IDL Definition

TCPA_RESULT TPM Di r Read(

[in] TCPA_DI RINDEX DI Ri ndex,

[in, out] TCPA DI RVALUE* Contents);

Type

TCPA protected capability.

Parameters

Type Name Description

TCPA_DIRINDEX DIRIndex Index of the DIR.

TCPA_DIRVALUE* | Contents Pointer to a memory location that will receive the

contents.

Actions

TPM_DirRead is a non-authenticated operation that returns the current contents of the named DIR.

Return Value

Description

TCPA_SUCCESS

Operation completed successfully.

TCPA_BADINDEX

The DIR does not exist.

TCPA_FAIL

An internal error occurred, or an earlier self-test failed.

Version 1.0 25 January, 2001

TCPA Main Specification Page 123

7. Protected Storage

Start of informative comment:

This section introduces the processes by which a TPM may act as the portal to confidential data stored
on arbitrary storage media.

A TPM is required to protect the keys that represent TPM identities, and keys that are released only when
the computing environment of the associated platform has a particular state. Given this capability, it is a
natural extension to enable a TPM to protect arbitrary data and arbitrary keys. Unfortunately, this
approach requires a potentially unbounded amount of storage within a TPM. The TCPA specification
therefore includes capabilities that enable a TPM to act as a portal to potentially unbounded amounts of
confidential data outside the TPM.

Storing data outside the TPM has the additional advantages of enabling easier migration of confidential
data from one platform to another and enabling recovery of confidential data in the event of platform
failure. These protected-storage capabilities are designed to enable the TPM to operate as a slave device
so as to avoid the cost complexity associated with a master device in a computing platform. These
capabilities also are designed to avoid the need for the TPM to manage the confidential data that is
stored outside the TPM. These design goals impose constraints on the nature of the protected-storage
capabilities.

The TCPA solution uses the TPM to generate “blobs” of secret data. Unspecified capabilities outside the
Subsystem manage protected storage and issue certificates or other indications about the purpose and
usefulness of data/keys held in blobs. Those unspecified capabilities issue commands to the TPM that
cause it to create blobs of data and to use and return the contents of such blobs. This unspecified
functionality is the manager of protected storage and uses the TPM as a specialized co-processor. The
protected-storage commands are chosen to prevent subversion of the data in protected storage. Hence a
rogue management function can disrupt protected storage but cannot subvert it.

A stored secret could be any of the following:

Arbitrary data or a key. If a secret is arbitrary data, it can be exported from the TPM, and the TPM wiill
not perform operations using that data. If the secret is a key, it is available for use within the TPM,
and will never be exported from the TPM.

An encryption (storage) key or a signing key. If a key is for encryption, it must not be used for signing,
and visa versa. Encryption keys are used only to provide confidentiality for blobs. Signature keys are
used for signing arbitrary data submitted by the entity authorized to use that key.

The signature key of a TPM identity. Such a signature key will be used only for special signing
operations.

A stored secret has the following attributes:

It may be capable of migration to another platform or it may be non-migratable. Keys that are
migratable cannot be considered unique to a particular platform. Non-migratable keys can be
considered to be unique to a particular platform.

It may be generated inside the TPM or externally loaded. Externally loaded keys cannot be stored as
non-migratable keys, for obvious reasons.

It may be bound to the TPM or bound to a sequence of integrity metrics. At times, data or a key is
required to be bound to a particular platform. At other times, it is required to be bound to a particular
computing environment within a platform.

It may have access control. A secret may be open to all processes on a platform or it may not, with
varying degrees of control in between.

Some of these attributes are partitioned as separate commands, while others are partitioned as flags
within commands. All the commands cause the TPM to create a secret blob and return it to the caller. The
inverse commands cause the TPM to import a blob. Sometimes the TPM will then return the contents of

Version 1.0 25 January, 2001

TCPA Main Specification Page 124

the blob (data) to the caller, and sometimes the TPM loads the contents of the blob (a key) for use within
the TPM.

In all cases, the TPM must already contain the key that will be used to either encrypt or decrypt the blob.
This naturally leads to a tree of blobs, where intermediate nodes contain encryption (storage) keys that
are used to encrypt/decrypt child nodes. The root of the tree is the “Storage Root Key” (SRK) which is
generated inside the TPM and is non-migratable. Only leaf nodes can contain signing keys, because a
TPM will refuse to use a signing key to encrypt/decrypt child nodes. A TPM also will refuse to use a
migratable node as the parent of a non-migratable node. (This enables migration of the supposedly non-
migratable node.) On the other hand, a non-migratable node could be the parent of a migratable node,
with no ill effects.

The commands executed by the TPM are as follows:

TSS_Bind: External data is encrypted under a parent key. (TPM_UnBind decrypts the blob using the
parent key and exports the data from the TPM.)

TPM_Seal: External data is concatenated with a value of integrity metric sequence and encrypted
under a parent key. (TPM_Unseal decrypts the blob using the parent key and exports the plaintext
data if the current integrity metric sequence inside the TPM matches the value of integrity metric
sequence inside the blob.)

TSS_WrapKey: An externally generated key is encrypted under a parent key. (TPM_LoadKey
decrypts the target blob using the parent key and loads the target key inside the TPM, for use by the
TPM.)

TSS_WrapKeyToPcr: An externally generated key is concatenated with a value of integrity metric
sequence and encrypted under a parent key. (TPM_LoadKey decrypts the target blob using the
parent key and loads the target key inside the TPM, for use by the TPM, if the current integrity metric
sequence inside the TPM matches the value of integrity metric sequence inside the blob.)

TPM_CreateWrapKey: A key is generated inside the TPM and then encrypted under a parent key.
(TPM_LoadKey decrypts the target blob using the parent key and loads the target key inside the
TPM, for use by the TPM.)

TPM_CreateWrapKeyToPcr: A key is generated inside the TPM, concatenated with a value of
integrity metric sequence, and encrypted under a parent key. (TPM_LoadKey decrypts the target blob
using the parent key and loads the target key inside the TPM, for use by the TPM, if the current
integrity metric sequence inside the TPM matches the value of integrity metric sequence inside the
blob.)

When a blob is loaded into a TPM, the TPM distinguishes between a data-bearing blob and a key-bearing
blob by inspecting the data structure inside the blob. Data-bearing blobs are constructed according to
PKCS #1. Key-bearing blobs are constructed using a TCPA-defined format. Each blob containing a key
includes the field KeyUsage, which indicates whether the key is to be used for encryption (storage) or
signing.

Command Usage with keys Comment
TSS_Bind N/A No key
TPM_Seal N/A No key

TSS WrapKey Migratable, encrypt or sign Externally loaded
TSS WrapKeyToPcr Migratable, encrypt or sign Externally loaded
TPM_CreateWrapKey Any

TPM_ CreateWrapKeyToPcr Any

TCPA-protected storage uses asymmetric cryptography exclusively. One reason is that asymmetric
crypto is already required to support TPM identities, but asymmetric crypto is not specifically necessary
for any function. Another reason is that (in many, but not all, cases) operations to construct blobs can be
performed outside the TPM; only the recovery of information from blobs (using the private key) must be

Version 1.0 25 January, 2001

TCPA Main Specification Page 125

done inside a TPM. This is possible because it is frequently true that all the necessary data to construct a
blob (including the public key) is available outside the TPM. One notable exception is the TPM_Seal
command, which must be performed inside a TPM because it requires reliable access to the Patform
Configuration Registers. Using asymmetric crypto for protected storage therefore reduces the complexity
of a TPM.

Some other important characteristics of “protected storage” are
Whenever a blob is created, the TPM includes random data to guard against plaintext attacks.

Whenever a CreateXX command creates a new key within the TPM, the blob that is produced
contains the private (signature) key and the TPM also exports the corresponding public (identity) key
as plaintext.

Whenever a WrapXX command bads a new key into the TPM, only the private key (and its RSA
modulus) must be presented.

Whenever the TPM_LoadKey command is asserted, the TPM imports a secret blob containing the
private (signature) key and the TPM also imports the corresponding public (identity) key as plaintext.
Active RSA keys inside the TPM are referenced by slot number where loaded into the TPM. To
minimize key management burden inside the TPM, it is assumed “key slot” management is performed
outside the TPM.

The integrity of the data from the TPM_UnBind command is not checked by the TPM. Hence
applications should use an “out of band” mechanism for verifying data integrity, if such verification is
necessary.

Each secret blob contains a field of 20 bytes that may be used for authorization data. For convenience,
the authorization field is the same size as the output of the SHA-1 hash algorithm. The authorization field
is merely stored inside a blob, and the protected-storage capabilities do not themselves interpret the field.

The AuthorizationDataUsage field determines when authorization is required.

The integrity of data or keys recovered from blobs is ensured by an implicit, rather than explicit,
mechanism. Ordinarily, an integrity check is provided by appending a checksum to original plaintext data.
After decryption, the checksum is recomputed and compared with the checksum in the recovered data.
Such a checksum needs to be at least 16 bytes long so as to have the necessary statistical properties. In
the case of recovered blobs, the first 20 bytes of authorization data are sufficient to determine with high
probability that data has been successfully decrypted without error. If the decryption fails, or the
encrypted data contains errors, it is unlikely that the authorization data in te recovered blob will match
the submitted authorization data.

The TPM also can be commanded to provide evidence that a particular public key is associated with a
non-migratable private key (which was generated by the TPM and has never been released outside the
TPM). This is the TPM_CERTIFYKEY operation. It enables a third party to use a public key to encrypt
data that can be recovered only using a protected-storage command. It also enables a third party to have
confidence that a signature key has been generated by the TPM and has never been released outside
the TPM.

Migratory data may be copied to an arbitrary number of platforms, using the “migration” commands
provided. Non-migratory data may be moved to another platform only with the cooperation of a third party
(the manufacturer of the platform, or his representative), using the “maintenance” commands provided.

End of informative comment.
7.1 Introduction

7.1.1 Characteristics

Start of informative comment:

Version 1.0 25 January, 2001

TCPA Main Specification Page 126

This section specifies how to use the TPM to provide secure storage for an unlimited number of private
keys or other data. Basically, this is done through the RSA key technology built into the TPM to encrypt
data and keys with a public key to which the TPM has access to its corresponding private key. The
resulting encrypted file, which contains header information in addition to the data or key, is called a blob,
and cannot be any bigger than key size used to encrypt it. The specification also shows how this is done,
so that private keys generated on the TPM can be stored outside the TPM (encrypted) in a way that
allows the TPM to use them later without ever exposing such keys in the clear outside the TPM.

Padding and speed requirements make the TPM a very inefficient and inappropriate vehicle to do any
bulk encryption, but it can be used to securely store keys that would then be used by software to do bulk
encryption. There are a number of usage modules that imply requirements on the function of the TPM, as
follows:

Signing with a private key by the TPM can be accomplished only by presentation of authorization data
to the TPM that is associated with that private key. A private key generated by a third party can be
linked to a specific TPM without exposing the private key to the Owner/User of the TPM, but only with
the consent of the User of the TPM.

It MUST be possible to prove a specific public key is associated with a private key known only to a
TPM. It must be possible for the Owner of a key, with the cooperation of the Owner of the TPM to
migrate a migratable key fom one platform to another without giving up control of the key to the TPM
Owner.

It must not be possible for the Owner of a key, even with the cooperation of the Owner of the TPM to
migrate a non-migratable key from one platform to another. Since a key may be wrapped outside the
TPM, it is necessary that non-migratable keys always be generated inside the TPM. It must not be
possible for the Owner of a non-migratable asymmetric key, even with cooperation of the Owner of
the TPM, to decrypt the contents of an encrypted bundle encrypted with that non-migratable
asymmetric key.

If a TPM is compromised, it must not compromise all TPMs.

To facilitate application level exchange of symmetric keys, the symmetric keys are stored using
PKCS#1.

All this is generally accomplished as follows:
Any data in protected storage is explicitly identified as migratable or non-migratable.

Each TPM contains a SRK, generated by the TPM at the request of the Owner. Under that SRK are
two trees: one dealing with migratable data and the other dealing with non-migratable data.

The non-migratable tree is directly below the SRK. The migration tree is directly below a “migration
root” key that is directly below the SRK. Each node in a tree provides confidentiality for the nodes
immediately below it. Obviously, all intermediate nodes in the trees must be encryption keys. Nodes
in the non-migratable tree must be generated by the TPM; otherwise, non-migratable nodes could be
exposed.

Finally, some observations:

In the migration tree, only leaf nodes should be available for signing. This is because a signature
node (used outside the TPM for signing) should never be used for encryption and hence cannot be
used to encrypt other nodes. Hence, it must be a leaf.

Similarly, in a non-migration tree, only leaf-nodes should be available for signing. Since non-
migratable nodes must not be migrated, they must never appear outside the TPM after being installed
in the TPM.

Any non-leaf node in the non-migratable tree must be generated within the TPM and never exposed
outside the TPM. Any key (and hence every non-migratable key) generated in a TPM must be a
genuine key.

Version 1.0 25 January, 2001

TCPA Main Specification Page 127

7.1.2 Key Storage

The number of asymmetric keys that are storable via a TPM SHOULD be limited only by the volume of
storage available to the platform.

The TPM SHALL ensure that the keys in all slots, other than slot 0, are volatile.

7.2 Mandatory Functions

Version 1.0 25 January, 2001

TCPA Main Specification Page 128

7.2.1 TPM_Seal

IDL Definition

TCPA_RESULT TPM Seal (
[in, out] TCPA AUTH* pubAuth,
[AUTH, in] U NT32 futurePCRSize,

[AUTH, in] UI NT32 bl obSize,

[AUTH, in] U NT32 Seal edMaxSi ze,

[AUTH, in] BOOL CurrentStateCQut,

[AUTH, in] TCPA _ENCAUTH Secret,

[AUTH, in] TCPA _KEY_SLOT parentSlot,

|
|
|
|
|
[AUTH, in] TCPA_COMPOSI TE_HASH t ar get PCRHash,
|
|
|
|

[AUTH, in, size_is(futurePCRSize)] BYTE* targetPCR,
[AUTH, in, size_is(blobSize)] BYTE* bl ob,

[AUTH, in, out] Ul NT32* Seal edSi ze,

[AUTH, in, out] UINT32* currentPCRSi ze,

[AUTH, out, size_is(*Seal edSize), out] BYTE* Seal edBl ob,
[AUTH, out, size_is(*currentPCRSize), out] BYTE* current PCR);

Type
TPM function; user must provide authorization to use the key pointed to by keySlot.

Parameters
Type Name Description
TCPA_AUTH* PubAut h This SHALL be the authorization session that

Version 1.0 25 January, 2001

TCPA Main Specification Page 129

authorizes the use of key pointed to by keySlot.
The session type MUST be OS-AP.

UINT32 futurePCRSi ze This SHALL be the size of the futurePCR
parameter

UINT32 bl obSi ze This SHALL be the size of the object parameter

UINT32 Seal edMaxSi ze The maximum size of the output area

BOOL Current St at eCut If set to FALSE, the TPM SHALL not return the

current PCR values.

TCPA_ENCAUTH Secr et The encrypted authorization data for the sealed
data. The encryption key is the shared secret
from the OS-AP protocol being an XOR of the

data.

TCPA_KEY_SLOT par ent Sl ot This SHALL be the public key that is the parent
of the sealed data

TCPA_COMPOSITE_HASH Tar get PCRHash This SHALL be the composite digest of the PCR

indexes and values to which parameter blob &
to be sealed. This must have been constructed
according to the algorithm described in 10.4.5
using the target PCR values.

BYTE* t ar get PCR This SHALL be a TCPA _PCR_SELECTION
structure containing the list of the indexes of the
PCRs to which the blob parameter is to be

sealed.
BYTE* Bl ob This SHALL be the data to be sealed to the
platform and any specified PCRs
UINT32* Seal edSi ze The used size of the output area for SealedBlob
UINT32* current PCRSi ze The used size of the output area for currentPCR
BYTE* Seal edBl ob Encrypted, integrity-protected data object that is

the result of the TPM_Seal operation.

BYTE* Cur rent PCR This SHALL be the concatenated
TCPA_PCR_COMPOSITE structure as
computed by the TPM with the current PCR
values

Actions
TPM_Seal is used to encrypt private objects that can only be decrypted using TPM_Unseal.

The TPM_Seal command MUST use the RSAES_OAEP protocol from PKCS#1 version 2.0 to perform
the encryption.

The TPM_Seal command MUST fill in a TPM_SEALED_DATA structure and then encrypt the structure.
The encryption key for the operation is the key pointed to by parentSlot parameter.

The TPM MUST check that the targetPCR parameter is a consistent TCPA_PCR_SELECTION structure.
If not, the TPM MUST return the error code TCPA_BADINDEX.

If the targetPCRSize parameter value is not equal to 0x00, the TPM will compute a
TCPA_COMPOSITE_HASH value, using the targetPCR TCPA PCR_SELECTION structure, to fill the

Version 1.0 25 January, 2001

TCPA Main Specification Page 130

TPM_SEALED_DATA.digestAtCreation member variable. The TPM MUST compute this
TCPA_COMPOSITE_HASH value using the targetPCR parameter as the input to the algorithm described
in 10.4.5. The TPM MUST set the TPM_SEALED_ DATA.IsSealedToPCR value to TRUE.

If the targetPCRSize parameter value is 0x00, then the blob parameter is not bound to any particular
PCR values. The TPM MUST set the TPM_SEALED_DATA.IsSealedToPCR value to FALSE.

If the CurrentStateOut parameter is set to TRUE, then the currentPCR parameter MUST be the
TCPA_PCR_COMPOSITE structure that was generated by the TPM when creating the
TPM_SEALED_DATA.digestAtCreation.

If the CurrentStateOut parameter is set to FALSE, then the TPM MUST not return the current values of
the PCRs in targetPCR.pcrindex. The TPM MUST set CurrentPCRSize to Q Note that in this case, the
TPM still computes the TPM_SEALED_DATA.digestAtCreation parameter.

The TPM SHALL return TCPA_FAIL CurrentStateOut is TRUE and targetPCRSize equals O.

While the caller MUST provide authorization data, there is no requirement on the authorization data itself.
If the caller wishes to use authorization data like nulls or other well-known values the TPM MUST NOT
check for these conditions.

Manufacturers MUST ensure that TPM_Sealed blobs are distinguishable by the TPM from other
encrypted data blobs by using the TPM_SEALED_DATA structure.

Return Value Description

TCPA_SUCCESS Operation completed successfully

TCPA_BADINDEX PCR index does not exist.

TCPA_FAIL An internal error occurred, or a previous self-test failed.
TCPA_AUTHFAIL Authorization data is incorrect.

TCPA_DISABLED The TPM is disabled.

Version 1.0 25 January, 2001

TCPA Main Specification Page 131

7.2.2 TPM_Unseal
Start of informative comment:

The TPM_Unseal operation will reveal TPM_Sealed data only if it was encrypted on this platform and the
current configuration (as defined by the named PCR contents) is the one named as qualified to decrypt it.
Internally, TPM_Unseal accepts a data blob generated by a TPM_Seal operation. TPM_Unseal decrypts
the structure internally, checks the integrity of the resulting data, and checks that the PCR named has the
value named during TPM_Seal. Additionally, the caller must supply appropriate authorization data for
blob and for the key that was used to seal that data.

If the integrity, platform configuration and authorization checks succeed, the sealed data and a proof of
the configuration of the platform at the time when the data was stored are returned to the caller;
otherwise, an error is generated.

End of informative comment.
IDL Definition

TCPA_RESULT TPM Unseal (
[in, out] TCPA _AUTH* Parent Aut h,
[in, out] TCPA_AUTH* BI obAut h,
[AUTH, in] UINT32 Bl obSi ze,

[AUTH, in] U NT32 MaxSecretSize,
[AUTH, in] U NT32 pcrlListSize,
[AUTH, in] TCPA _KEY_SLOT parentKeySl ot,

[AUTH, in, size_is(pcrListSize)] BYTE* pcrlist,
[AUTH, in, out] UI NT32* SecretSize,

[AUTH, out] TCPA_COWPCSI TE_HASH* O dPcr Hash,

[AUTH, out, size_is(*SecretSize)] BYTE* Secret);

i
[
i
[AUTH, in, size_is(BlobSize)] BYTE* Bl ob,
[
[

Type

TPM protected capability; the user must provide authorizations to use the parent key pointed to by
parentKeySlot.

Parameters

Type Name Description

TCPA_AUTH* Par ent Aut h Authorization data to use the key pointed to by the
parentKeySlot parameter.

TCPA_AUTH* Bl obAut h Authorization data to reveal the data encrypted in
the blob parameter.

UINT32 Bl obSi ze Size of blob

UINT32 MaxSecr et Si ze Maximum size of the output secret

UINT32 pcrLi st Si ze This SHALL be the size of the pcrList parameter

TCPA_KEY_SLOT Par ent Key Sl ot This SHALL be the index of the TPM Slot where the
key to be used for decryption of the blob is to be
found.

BYTE* Bl ob Encrypted data blob generated by a TPM_Seal
operation.

Version 1.0 25 January, 2001

TCPA Main Specification Page 132

BYTE* pcrLi st This SHALL be a TCPA_PCR_SELECTION
structure containing the list of the indexes of the
PCRs to which the blob parameter is to be sealed.

UINT32* Secret Si ze The size of the outputted secret
TCPA_PCRVALUE* A dPcr Hash This SHALL be the composite hash that was stored

in the decrypted blob’s digestAtCreation parameter.
BYTE* Secr et Filled with the decrypted sealed data (if the

operation succeeds).

Actions

The TPM_Unseal MUST decrypt the data blob into a TCPA-shielded location using the private part of the
key pointed to by parentKeySlot. The decryption operation requires valid authorization data to use the
that private key. If the authorization data is improper, the TPM MUST return the error TCPA_AUTHFAIL.

The TPM MUST then check the integrity of the decrypted data blob. The integrity check establishes that
the decrypted blob is a consistent TPM_SEALED_DATA structure created with by a TPM_Seal operation
on the same TPM that is attempting the TPM_Unseal and that the data blob has not been modified. The
TPM MUST check that the tpmProof parameter in the decrypted blob matches the TPM's own
TCPA_PERSISTENT_FLAGS.tpmProof. If the decrypted blob fails the integrity checks, then the
TPM_Unseal operation MUST return the error TCPA_NOTSEALEDBLOB.

If the decrypted blob’s IsSealedToPCR parameter value is TRUE, then the TPM MUST ensure that
the PCRs to which the blob was sealed are the same as the PCRs’ values that exist at the time of
TPM_Unseal. To do this, the TPM will compute a composite hash using the pcrList parameter as the
input to the composite hashing algorithm (See 10.4.5).

If the resulting composite hash matches the decrypted blob’s digestAtUnseal parameter the TPM MUST
return the data parameter of the decrypted blob as the TPM_Unseal Secret output parameter, and the
decrypted blob’s digestAtCreation as the TPM_Unseal OldPcrHash output parameter. If the composite
hashes do no match, the TPM MUST return TCPA_WRONGPCRVAL.

If the pcrList.pcrCount parameter is 0, the TPM MUST not unseal the data, and simply return the
TCPA_NO_PCR_INFO error return status.

The TPM MUST check that the pcrList parameter is a consistent TCPA_PCR_SELECTION structure. If
not, the TPM MUST return the error code TCPA_BADINDEX.

If the decrypted blob’s IsSealedToPCR parameter value is FALSE, then the TPM does not need to
check PCR configuration. The TPM MUST return the data parameter of the decrypted blob as the
TPM_Unseal Secret output parameter, and the decrypted blob’s digestAtCreation as the TPM_Unseal
OldPcrHash output parameter (Although this OldPcrHash parameter has no meaning in this case).

Return Value Description
TCPA_SUCCESS Operation completed successfully
TCPA_BADINDEX PCR index does not exist.

TCPA_NOTSEALEDBLOB | The encrypted blob is not a valid TPM_Sealed blob created by this TPM.

TCPA_INVALID_HANDLE The key handle does not exist or is not active.

TCPA_FAIL An internal error occurred, or a previous self-test failed.

TCPA_WRONGPCRVAL The named PCR value does not match the current PCR value.

Version 1.0 25 January, 2001

TCPA Main Specification Page 133

TCPA_NO_PCR_INFO The list of PCR indices to which the data is sealed has not been provided
TCPA_AUTHFAIL The authorization data is improper.
TCPA_DISABLED The TPM is disabled.

Version 1.0 25 January, 2001

TCPA Main Specification Page 134

7.2.3 TSS_Bind

Start of informative comment:

The TSS_Bind command can either generate data and create a secure storage bundle for that data or
merely create a secure storage bundle for data passed to it. The Generate provision may be used to
create a random key for usage externally by a bulk encryption engine or by the TPM for functions other
than those required by this specification.

End of informative comment.

IDL Definition

TCPA_RESULT TSS_Bi nd(
[in] BOOL Generate,
[in] U NT32 Bl obSi ze,
[in] U NT32 MaxQut Bl obSi ze,
[in] TCPA PUBKEY PubKey,
[in, size_is(BlobSize)] BYTE* Bl ob,
[in,out] U NT32* CQutBl obSi ze,
[out, size_ is(*QutBlobSize)] BYTE* CQutBIl ob);

Type
TSS function

Parameters

Type Name Description

BOOL Cenerate TRUE means that TSS_BIND both generates and binds data.
FALSE means that TSS_BIND binds submitted data (and does
not generate it)

UINT32 Bl obSi ze Size of the data being bound.

UINT32 MaxQut Bl obSi ze | The maximum size of the output blob

TCPA_PUBKEY | PubKey Public key used to Bind the data

BYTE* Bl ob Data being bound.

UINT32* Qut Bl obSi ze Size of output blob

BYTE* Qut Bl ob This is the bound data

Actions

TSS_Bind will take one of two actions depending on the Generate parameter.
The data size MUST be 44 bytes less than the modulus of the PubKey.
Generate = true

Generate random data of the size specified by BlobSize

Create PKCS#1 data format

Encrypt data area using public key specified in PubKey

Generate = false

Version 1.0 25 January, 2001

TCPA Main Specification Page 135

Format Blob parameter into PKCS#1 format

Encrypt the data using the public key specified in PubKey

Both actions return the encrypted blob in the OutBlob parameter.

A check SHOULD be made that the bound data will not look to the TPM like a wrapped key (in which
case the TPM would not be able to TPM_UnBind the data).

Return Value Description

TCPA_SUCCESS Success

TCPA_FAIL Unknown error

Version 1.0 25 January, 2001

TCPA Main Specification

7.2.4 TPM_UnBind

Start of informative comment:

Page 136

TPM_UnBind takes the data blob that is the result of a TSS_Bind command and decrypts it for export to
the User. The caller must authorize the use of the key that will decrypt the incoming blob.

End of informative comment.

IDL Definition
TCPA RESULT TPM UnBi nd(
[in, out] TCPA AUTH* PubAut h,
[AUTH, in] U NT32 Bl obSi ze,
[AUTH, in] TCPA KEY_SLOT keySl ot,
[AUTH, in] U NT32 MaxQut Si ze,
[AUTH, in, size_is(BlobSize)] BYTE* Bl ob,
[AUTH, in, out] UINT32* QutSize,
[AUTH, size_is(*CQutSize), out] BYTE* CutArea);
Type
TCPA protected capability; the user must provide authorization to use the key specified in the pubKey
parameter.
Parameters
Type Name Description
TCPA_AUTH* PubAut h HMAC authorization for TPM to use the private key to decrypt the
Blob.
UINT32 Bl obSi ze Size of input blob
TCPA_KEY_SLOT | keySl ot Slot containing private key corresponding the to public key used to
bind the data in TSS_Bind
UINT32 MaxQut Si ze Maximum allowed output size
BYTE* Bl ob Encrypted Blob to be decrypted.
UINT32* Qut si ze Length of output data
BYTE* Qut Ar ea The secret that was inside the Blob, now decrypted.
Actions

The TPM SHALL perform the following:

Validate the authorization to use the key pointed to by keySlot

Decrypt the Blob using the key pointed to by keySlot

Return the decrypted information in parameter OutArea

Return Value

Description

TCPA_SUCCESS

Success.

TCPA_AUTHFAIL

Authorization failed.

TCPA_FAIL

Unknown error

Version 1.0 25 January, 2001

TCPA Main Specification

7.2.5 TPM_CreateWrapKey

Start of informative comment:

Page 137

The TPM_CreateWrapKey command both generates and creates a secure storage bundle for asymmetric

keys.

End of informative comment.

IDL Definition

TCPA RESULT TPM Cr eat eW apKey(
[in, out] TCPA AUTH* KeySl ot Aut h,

i TCPA_ENCAUTH Dat aUsageAut h,

TCPA_ENCAUTH Dat aM gr at i onAut h,

TCPA_KEY_SLOT KeySl ot ,

[AUTH, in]
[AUTH, in]
[AUTH, in]
[AUTH, in]
[AUTH, in]
[AUTH, i n]
[AUTH, in,

Type

U NT16 Type,

TCPA_KEYUSAGE KeyUsage,
TCPA_DATAUSAGE Dat aUsage,
out] TCPA_KEY keyl nf o;

TCPA protected capability; user must provide authorization to use the key pointed to by keySlot.

Parameters

Type Name Description

TCPA_AUTH KeySlotAuth Authorization to use key in keySlot. Session type MUST
be OSAP.

TCPA_ENCAUTH DataUsageAuth Encrypted authorization data to be used with the new key.

TCPA_ENCAUTH DataMigrationAuth Encrypted data used to authorize migration of the newly
generated key.

TCPA_KEY_SLOT KeySlot Public key used to wrap the generated key

UINT16 Type Used for nonstandard keys.

TCPA_KEYUSAGE KeyUsage Indicates the usage of the key

TCPA_DATAUSAGE DataUsage Indicates how the data will be used

TCPA_KEY keylnfo The input structure contains all parameters except pubkey
and privkey (which are NULL), to specify the size and type
of the new key. The output structure also contains pubkey
(the public part of the new key) and privkey (the wrapped
private key).

Descriptions

This command requires the encryption of two parameters. To create two XOR strings the caller takes the
two nonces in use by the OSAP session and concatenates one nonce and the session shared secret and
then hashes the result. The hash from the shared secret and the odd numbered hash (generated by the
caller) encrypts the DataUsageAuth. The hash from the shared secret and the even numbered hash
(generated by the TPM) encrypts the DataMigrationAuth.

Actions

The TPM SHALL do the following:

Version 1.0 25 January, 2001

TCPA Main Specification Page 138

Validate the authorization to use the key pointed to by KeySlot. Return TCPA_BADAUTH on any
error.

If the key in KeySlot is migratable and requested key is non-migratable then return
TCPA_MIGRATEFAIL.

Validate the key in KeySlot is a storage key

Validate all other parameters

Any error on above checks return TCPA_BAD_PARAMETER

Create the two XOR patterns by using the session key and the nonces for this transaction
Decrypt the DataUsageAuth and DataMigrationAuth parameters

Generate asymmetric key according to parameters sent

Create a TCPA_KEY structure using the key pointed to by KeySlot as the key for any encryptions
Return the TCPA_KEY structure in the keylnfo parameter

Return Value Description
TCPA_SUCCESS Success
TCPA_FAIL General error

TCPA_BAD_PARAMETER One of the parameter was in error

TCPA_AUTHFAIL The authorization to use keySlot failed

Version 1.0 25 January, 2001

TCPA Main Specification Page 139

7.2.6 TPM_CreateWrapKeyToPcr
Start of informative comment:

The TPM_CreateWrapKeyToPcr is similar to the TPM_CreateWrapKey command except that
TPM_CreateWrapKeyToPcr locks the data blob to a PCR value as well as authorization data, and wraps
only with a non-migratable key. This command generates and creates a secure storage bundle for
asymmetric keys. .

End of informative comment.

IDL Definition

TCPA RESULT TPM Creat eW apKeyToPcr (

[in, out] TCPA AUTH* KeySl ot Aut h,

[AUTH, in] U NT32 MaxW apSi ze,
[AUTH, in] U NT32 targetPCRSi ze,
[AUTH, in, size_is(targetPCRSize)] BYTE* targetPCR,
[AUTH, in] TCPA_ENCAUTH Dat aUsageAut h,
[AUTH, in] TCPA_ENCAUTH Dat aM gr ati onAut h,
[AUTH, in] TCPA_COWPOSI TE_HASH t ar get PCRHash,
[AUTH, in] TCPA _KEY_SLOT KeySl ot,
[AUTH, in] U NT16 Type,
[AUTH, in] TCPA _KEYUSAGE KeyUsage,
[AUTH, in] TCPA DATAUSAGE Dat aUsage,
[AUTH, in, out] TCPA KEY keylnfo,
Type
TCPA protected capability; the user must provide authorization to use the key indicated by keySlot.
Parameters
Type Name Description
TCPA_AUTH KeySlotAuth Authorization to use key in keySlot. Session type
MUST be OSAP.
UINT32 MaxWrapSize The maximum size of the wrap area
UINT32 targetPCRSize This SHALL be the size of the targetPCR parameter
BYTE* targetPCR This SHALL be a TCPA PCR_SELECTION
structure containing the list of the indexes of the
PCRs that are to be reported.
TCPA_ENCAUTH DataUsageAuth Encrypted authorization data to be used with the

new key.

TCPA_ENCAUTH

DataMigrationAuth

Encrypted data used to authorize migration of the
newly generated key.

TCPA_COMPOSITE_HASH targetPCRHash This SHALL be the composite digest of the PCR
indexes and values to which parameter blob is to be
sealed. This must have been constructed according
to the algorithm described in 10.4.5 using the target
PCR values.

TCPA_KEY_SLOT KeySlot Public key used to wrap the generated key

UINT16 Type Used for nonstandard keys.

TCPA_KEYUSAGE KeyUsage Indicates the usage of the key

Version 1.0 25 January, 2001

TCPA Main Specification Page 140

TCPA_DATAUSAGE DataUsage Indicates how the data will be used

TCPA_KEY keylnfo The input structure contains all parameters except
pubkey and privkey (which are NULL), to specify the
size and type of the new key. The output structure
also contains pubkey (the public part of the new
key) and privkey (the wrapped private key).

Descriptions

This command requires the encryption of two parameters. To create two XOR strings the caller takes the
two nonces in use by the OSAP session and concatenates one nonce and the session shared secret and
then hashes the result. The hash from the shared secret and the odd numbered hash (generated by the
caller) encrypts the DataUsageAuth. The hash from the shared secret and the even numbered hash
(generated by the TPM) encrypts the DataMigrationAuth.

Actions

The TPM SHALL do the following:

Validate the authorization to use the key pointed to by KeySlot. Return TCPA_BADAUTH on any
error.

If the key in KeySlot is migratable and requested key is non-migratable

Validate the key in KeySlot is a storage key

Check the validity of the migration nonce in KeySlot

Validate all other parameters.

Any error on above checks return TCPA_BAD_PARAMETER

Create the two XOR patterns by using the session key and the nonces for this transaction
Decrypt the DataUsageAuth and DataMigrationAuth parameters

Generate asymmetric key according to parameters sent

Create the composite digest: If the targetPCRSize parameter value is 0x00, the TPM MUST
return the error code TCPA_BADINDEX. Otherwise, the TPM will compute a
TCPA_COMPOSITE_HASH value, using the targetPCR TCPA _PCR_SELECTION structure, to
fill the TPM_SEALED_DATA.digestAtCreation member variable. The TPM MUST compute this
TCPA_COMPOSITE_HASH value using the targetPCR parameter as the input to the algorithm
described in 10.4.5. The TPM MUST set the TPM_SEALED_DATA.IsSealedToPCR value to
TRUE.

The TPM MUST check that the targetPCR parameter is a consistent TCPA_PCR_SELECTION structure.
If not, the TPM MUST return the error code TCPA_BADINDEX.

Create a TCPA_KEY structure using the key pointed to by KeySlot as the key for any encryptions
Return the TCPA_KEY structure in the Keylnfo parameter

Return Value Description

TCPA_SUCCESS Success

TCPA_FAIL General error
TCPA_BAD_PARAMETER One of the parameter was in error
TCPA_BADAUTH The authorization to use keySlot failed

Version 1.0 25 January, 2001

TCPA Main Specification Page 141

7.2.7 TSS _WrapKey

Start of informative comment:

The TSS_ WrapKey command creates a migratable blob for a key that has been presented externally.
The creator of the key can prevent migration by the User by wrapping it with a non-migratable storage key
and loading random data for the MigrationAuthorizationData. However, the internal bit will still be set as
migratable. This allows delegation of a key without giving the delegator the right to further delegate.
Because the key was created elsewhere, there is no need to return the PubKey of the key being
wrapped, and because a public key is used for the wrapping, external to the TPM, there is no need for
authorization data for the wrapping key to be passed.

End of informative comment.
IDL Description

TCPA_RESULT TSS_W apKey(
[in] U NT32 MaxW apSi ze,
[in] U NT32 KeyToW apSi ze,
[in] TCPA_SECRET Dat aM grati onAut h,
[in] TCPA_SECRET Dat aUsageAut h,
[in] TCPA _PUBKEY PubKey,
[in] TCPA _KEYUSAGE KeyUsage,
[in] TCPA AUTHDATA USACGE Dat aUsage,
[in, size_is(KeyToWapSize)] BYTE* KeyToW ap,
[in, out] U NT32* WapSize,
[out, size_ is(*WapSize)] BYTE* Wap);

Type

TSS capability

Parameters

Type Name Description

UINT32 MaxW apSi ze The maximum size of the Wrap area

UINT32 KeyToW apSi ze The size of the KeyToWrap parameter
TCPA_SECRET Dat aM gr ati onAut h The data migration secret

TCPA_SECRET Dat aUsageAut h The data usage secret

TCPA_PUBKEY PubKey Public key used to wrap the KeyToWrap parameter
TCPA_KEYUSAGE KeyUsage Tells if key is a storage or usage key
TCPA_AUTHDATA | Dat aUsage Sets the frequency authorization data is needed for
USAGE this key.

BYTE* KeyToW ap External key being wrapped.

UINT32* W apSi ze Size of wrapped data

BYTE* W ap Result of wrapping key.

Descriptions
A TSS function
Actions

TSS_WrapKey is used for wrapping up keys that were generated somewhere other than the TPM so that
they can be used by the TPM. Such keys will always be migratable. Wrapping can be done entirely

Version 1.0 25 January, 2001

TCPA Main Specification Page 142

outside the TPM, by software, hence this is a TSS function. Wrapping is always done by a public key,
hence there is no need for authorization to perform this function.

Return Value Description
TCPA_SUCCESS Success.
TCPA_FAIL Failure.

Version 1.0 25 January, 2001

TCPA Main Specification Page 143

7.2.8 TSS WrapKeyToPcr

Start of informative comment:

The TSS WrapKeyToPcr command is similar to the TSS WrapKey command except that it has an
additional requirement for authorization of use: a PCR value must match the value given at blob-creation
time. Thus, TSS_WrapKeyToPcr creates a migratable blob for a key that has been presented externally.

Both authorization data and a given PCR value are set as part of the authorization requirement.

End of informative comment.

IDL Description

TCPA RESULT TSS W apKeyToPcr (
Ul NT32 MaxW apSi ze,

[in]
[in]
[in]
[in]
[in]
[in]
[in]
[in]
[in]
[in,
[in,
[in,
[out,

Type
TSS capability

Parameters

Ul NT32 KeyToW apSi ze,

Ul NT32 target PCRSi ze,

TCPA_SECRET Dat aM gr at i onAut h,
TCPA SECRET Dat aUsageAut h,
TCPA_COMPCSI TE_HASH t ar get PCRHash,

TCPA_PUBKEY PubKey,

TCPA_KEYUSAGE KeyUsage,
TCPA_AUTHDATA USACGE Dat aUsage,

si ze_is(target PCRSi ze)]
si ze_i s(KeyToW apSi ze)]
Ul NT32* W apSi ze,

out]

size_i s(*WapSi ze)]

BYTE* target PCR,
BYTE* KeyToW ap,

BYTE* W ap);

Type

Name

Description

UINT32

MaxW apSi ze

The maximum size of the wrap parameter

UINT32

KeyToW apSi ze

The size of the KeyToWrap parameter

UINT32

t ar get PCRSi ze

The size of the targetPCR parameter

TCPA_SECRET

Dat aM gr ati onAut h

The authorization value to permit use

TCPA_SECRET

Dat aUsageAut h

The authorization value to permit migration

TCPA_COMPOSITE
_HASH

t ar get PCRHash

This SHALL be the composite digest of the PCR
indexes and values to which parameter blob is to be
sealed. This must have been constructed according to
the algorithm described in 10.4.5 using the target PCR
values.

TCPA_PUBKEY PubKey Public key used to wrap the passed key
TCPA_KEYUSAGE keyUsage Tells if key is a storage or signature key
TCPA_AUTHDATA | Dat aUsage Sets the frequency authorization data is needed for
USAGE this key.

BYTE* t ar get PCR This SHALL be a TCPA PCR_SELECTION structure

containing the list of the indexes of the PCRs to which
the blob parameter is to be sealed.

Version 1.0 25 January, 2001

TCPA Main Specification

Page 144

BYTE* KeyToW ap External key being wrapped. Normal format would be
TCPA_KEY

UINT32* W apSi ze Size of wrapped data

BYTE* W ap Result of wrapping key.

Actions

TSS_WrapKeyToPcr behaves much the same as TSS_WrapKey.

It takes a key generated external to the TPM and wraps it with PubKey. Such keys are always migratable.
Use of the key by the TPM is restricted to such time as the PCR value referred to is in the correct state

and the correct authorization data is applied.

Return Value Description
TCAP_SUCCESS Success.
TCPA_FAIL Failure.

Version 1.0 25 January, 2001

TCPA Main Specification Page 145

7.2.9 TPM_LoadKey

Start of informative comment:

Before the TPM can use a key to either wrap, unwrap, bind, unbind, seal, unseal, sign or perform any
other action, it needs to be present in the TPM. The TPM_LoadKey function loads the key into the TPM
for further use. It is assumed that upper level software provides management of key slots within the TPM.
As such, the index of slot to load the key is passed as part of the authenticated parameter list.

The load command must maintain a record of whether any previous key in the key hierarchy was bound
to a PCR.

End of informative comment.

IDL Description

TCPA_RESULT TPM LoadKey(
[in, out] TCPA AUTH* Parent KeyAut h,

[AUTH, in] TCPA_KEY_SLOT I|nKeySl ot,

[AUTH, in] TCPA_KEY_SLOT Parent KeySl ot
[AUTH, in] U NT32 |InKeyBl obSi ze,

[AUTH, in] UINT32 pcrlListSize,

[
[
[
[AUTH, in, size_is(pcrListSize)] BYTE* pcrlist,
[AUTH, in] TCPA PUBKEY pubkey,
[AUTH, in] TCPA PRI VKEY pri vKey);
Type
TCPA protected capability; user must provide authorization to use the parent key pointed to by
ParentKeySlot.

Parameters
Type Name Description
TCPA_AUTH* Par ent KeyAut h Authorization to use the storage key to decrypt the

incoming key.

TCPA_KEY_SLOT

I nKey Sl ot

Index to internal TPM slot where decrypted
InkeyBlob is loaded.

TCPA_KEY_SLOT

Par ent Key Sl ot

TPM slot index of parent key.

UINT32

| nKeyBI ockSi ze

Size of the InKeyBlob parameter

UINT32 pcrLi st Size This SHALL be the size of the pcrList parameter

BYTE* pcrLi st This SHALL be the TCPA_PCR_SELECTION
structure filled in with the PCR indices necessary
to load the key

TCPA_PUBKEY pubKey This SHALL be the public portion of the key to be
loaded

TCPA_PRIVKEY pri vKey This SHALL be he private portion of the key to be

loaded

Actions

The TPM SHALL perform the following steps:

Validate the authorization to use the key in ParentKeySlot

Version 1.0 25 January, 2001

TCPA Main Specification Page 146

Extract the encrypted TCPA_STORE_ASYMKEY from privK ey
Decrypt TCPA_STORE_ASYMKEY using the key pointed to by ParentKeySlot
Validate the integrity of pubKey and decrypted TCPA_STORE_ASYMKEY

Load PCR indices. The TPM SHALL NOT check current PCR state during the TPM_LoadKey
command

Perform any processing necessary to make TCPA_STORE_ASYMKEY key available for
operations

Load key and key information into slot pointed to by InKeySlot. Any previous occupant of
InKeySlot is overwritten.

Set InKeySlot.PCRParent to ParentKeySlot.PCRParent. If ParentKeySlot.IsWrappedToPCR is
TRUE set InKeySlot.PCRParent to TRUE.

If the decrypted InKeyBlob’s IsWrappedToPCR parameter is TRUE,
If perList.pcrCount is 0, the TPM MUST return the TCPA_NO_PCR_INFO error.

Otherwise, the TPM MUST store the information contained in the pcrList parameter (the indices of the
PCRs to which the key in InKeyBlob is wrapped) together with the key that results from the decryption
of InKeyBlob. The PCR indices information will thereafter be available to any command that needs to
check the PCR configuration before using the key.

Every time before the loaded key is used, the pcrList indices from TPM_LoadKey and the PcrDigest
from the key's TCPA_STORE_ASYMKEY structure MUST be used to verify that the current PCR
state is correct. The TPM MUST ensure that the PCRs to which the key was sealed are the same as
the PCRs’ values that exist at the time of key usage. To do this, the TPM will compute a composite
hash using the pcrList parameter as the input to the composite hashing algorithm (See 10.4.5).

If the resulting composite hash matches the PcrDigest from the key's TCPA_STORE_ASYMKEY
structure, the TPM is permitted to use the key. Otherwise, if the composite hashes do not match, the
TPM is NOT permitted to use the key in the current PCR state, and the TPM MUST return
TCPA_WRONGPCRVAL.

If the decrypted InKeyBlob’s IsWrappedToPCR parameter is FALSE,
The TPM MUST ignore the pcrList parameter, and proceed with loading the key.

The TPM SHALL enforce the use of slot 0 for the SRK only. Attempts to load into slot O fail with

TCPA_FAIL.

Return Value

Description

TCPA_SUCCESS

Success.

TCPA_NOSPACE

No room to load key.

TCPA_FAIL

Failure.

TCPA_NO_PCR_INFO

The list of PCR indices to which the key is wrapped has not been provided

TCPA_WRONGPCRVAL

The named PCR value does not match the current PCR value.

Version 1.0 25 January, 2001

TCPA Main Specification Page 147

7.2.10TPM_GetPubKey
Start of informative comment:

The owner of a key may wish to obtain the public key value from a loaded key. This information may have
privacy concerns so the command must have authorization from the key owner.

End of informative comment.

IDL Description

TCPA_RESULT TPM Get PubKey(
[in, out] TCPA AUTH* KeyAut h,
[AUTH, in] TCPA_KEY_SLOT KeySl ot,
[AUTH, out] TCPA _PUBKEY* pubKey);

Type

TCPA protected capability; user must provide authorization to use the key pointed to by KeySlot.
Parameters

Type Name Description

TCPA_AUTH* KeyAut h Authorization to use the key in KeySlot
TCPA_KEY_SLOT KeySl ot Index to internal TPM slot that contains public key
TCPA_PUBKEY* pubKey Public key of key loaded KeySlot

Actions

The TPM SHALL perform the following steps:
Validate the authorization to use the key in KeySlot

Create a TCPA_PUBKEY structure and return

Return Value Description
TCPA_SUCCESS Success.
TCPA_FAIL Failure.

Version 1.0 25 January, 2001

TCPA Main Specification Page 148

7.2.11 TPM_CreateMigrationBlob
Informative Comment:

To migrate keys from one TPM to another for backup, upgrade or to clone a key on another platform, the
TPM needs to create a data blob that another TPM can deal with. This is done by loading in a backup
public key that will be used by the TPM to create a new data blob for a migratable key.

The TPM Owner does the selection and authorization of migration keys. The TPM Owner performs the
selection and authorization at any time prior to the execution of TPM_CreateMigrationBlob by performing

the TPM_AuthorizeMigrationKey command.

End of informative comment

IDL Definition

TCPA RESULT TPM Creat eM grati onBl ob(
[in, out] TCPA AUTH* KeyM gr at eAut h,

[AUTH, in] TCPA_KEY_SLOT keySl ot,
[AUTH, in] UI NT32 Bl obMaxSi ze,
[AUTH, in] TCPA_M GRATI ONKEYAUTH m grationStructure,
[AUTH, in] TCPA_PUBKEY M grati onW apKey,
[AUTH, in, out] U NT32* Bl obSi ze,
[AUTH, in, out] U NT32* RandonSi ze,
[AUTH, out, size_is(*Randontize)] BYTE* Random
[AUTH, out, size_is(*BlobSize)] BYTE* Bl ob);
Type
TCPA protected capability; user MUST provide authorization to use the key pointed to by keySlot.
Parameters
Type Name Description
TCPA_AUTH* KeyMigrateAuth Authorization to migrate the key in key slot. The

authorization calculation MUST use the migration
authorization data

TCPA_KEY_SLOT

keySlot

The slot containing the private key to be migrated

UINT32

BlobMaxSize

This SHALL be the maximum size of the output Blob
parameter

TCPA_MIGRATIONKEY
AUTH

migrationStructure

This SHALL be the migration key and authorization
to use the migration key

TCPA_PUBKEY

MigrationWrapKey

This SHALL be the public key that is destination.
This key MUST be a 2048 bit RSA key or higher.

UINT32* BlobSize This SHALL be the size of the output Blob
parameter

UINT32* RandomSize This SHALL be the size of the Random parameter

BYTE* Random A random string used to hide the key being backed
up from the backup authority. It is the responsibility
of the caller to properly store and protect this value.

BYTE* Blob This SHALL be the encrypted and XOR

TCPA_STORE_ASYMKEY structure

Version 1.0 25 January, 2001

TCPA Main Specification Page 149

Actions

The TPM SHALL perform the following actions:

Validate that the authorization to migrate the key in keyslot. The validation MUST use the
migrationAuthorization secret.

Validate that the key in keySlot is not marked as non-migratable
Calculate a digest of Migration.migrationKey and tpmProof and compare to Migration.digest
Create m1 by filling in a TCPA_MIGRATE_ASYMKEY structure from key in keySlot.

Create k1 and k2 by splitting the prime factor field from TCPA_MIGRATE_ASYMKEY.data into 2
parts. k1 is 20 bytes long, k2 contains the remainder of the prime factor.

Create 0l (which SHALL be 229 bytes for a 2048 bit RSA key) by performing the OAEP encoding of
m1 using OAEP parameters of

0O m=ml

0 pHash = migration authorization (the field removed from TCPA_STORE_ASYMKEY to create
TCPA_MIGRATE_ASYMKEY)

o0 seed=sl1l=Kkl

Create r1 a random value from the TPM RNG. The size of r1 MUST be the size of 0l. Return rl in the
Random parameter.

Create x1 by XOR of 01 with rl

Create 02 (which SHALL be 255 bytes) by performing the OAEP encoding of x1 using OAEP
parameters of

o m=xl1
o p = “Migration Blob” a ASCII string null terminated
o seed =s2 = 20 bytes from TPM RNG
Create f1 by filling in a TCPA_INTERNAL_HDR structure.
Create bl by concatenating f1 and 02
Encrypt b1l with the MigrationWrapKey

The TPM does not check the PCR values when migrating values locked to a PCR.

Return Value Description

TCPA_SUCCESS Success

TCPA_SHORTRANDOM Random string not long enough

TCPA_KEYNOTLOADED No Backup key loaded

TCPA_KEYNOTFOUND Key to be backed up not found
TCPA_MIGRATEFAIL Migration authorization failed
TCPA_FAIL Other failure

Version 1.0 25 January, 2001

TCPA Main Specification Page 150

7.2.12 TPM_MigrateMigrationBlob
Informative Comment:

This command allows changing of the key that is wrapping the encrypted migration blob. This operation
must be a TPM command to allow a migration entity to prove that it is performing this operation inside a
TPM.

End of informative comment
IDL Definition

TCPA _RESULT TPM M gr ateM grati onBl ob(
[in, out] TCPA AUTH* keySl ot Aut h,
[AUTH, in] TCPA KEY_SLOT keySl ot,
[AUTH, in] Ul NT32 outBl obMaxSi ze,
[AUTH, in] U NT32 inBl obSize,
[AUTH, in] TCPA PUBKEY ReW apKey,
[
[

[AUTH, in, out] Ul NT32* outBl obSi ze,
[AUTH, in, size_is(inBlobSize)] BYTE* inBlob,
[AUTH, out, size_is(*outBlobSize)] BYTE* outBl ob);
Type
TPM protected capability; user must provide authorization to use key pointed to by keySlot
Parameters
Type Name Description
TCPA_AUTH* keySlotAuth Authorization to migrate the key in key slot. The authorization
calculation MUST use the migration authorization data
TCPA_KEY_SLOT | keySlot The slot containing the key that will unwrap the migration blob
UINT32 outBlobMaxSize This SHALL be the maximum size of the outBlob parameter
UINT32 inBlobMax This SHALL be the size of the inBlob parameter
TCPA_PUBKEY ReWrapKey This SHALL be the public key that will rewrap the inBlob
parameter
UINT32* outBlobSize This SHALL be the size of the output Blob parameter
BYTE* inBlob This SHALL be the migration blob encrypted by the public key
of the key pointed to by keySlot
BYTE* outBlob This SHALL be the migration blob encrypted by the
ReWrapKey
Actions

The TPM SHALL perform the following actions:
Validate the authorization to use the key in keySlot
Create d1 by decrypting the inBlob area using the key in keySlot
Create 02 by removing TCPA_INTERNAL_HDR from d1
Create m2 and p2hash by performing OAEP decoding of 02
Verify that p2hash equals the SHAL of “Migration Blob” an ASCII null terminated string
Create outBlob by encrypting d1 with ReWrapKey

Version 1.0 25 January, 2001

TCPA Main Specification

Page 151

Return Value

Description

TCPA_SUCCESS

Success

TCPA_AUTHFAIL

Authorization to use the key pointed to by key slot was denied

TCPA_FAIL

Other failure

Version 1.0 25 January, 2001

TCPA Main Specification Page 152

7.2.13TPM_LoadMigrationBlob
Start of informative comment:

This command takes a migration blob and creates a normal wrapped Hob. The migrated blob must be
loaded into the TPM using the normal TPM_LoadKey function.

End of informative comment.

IDL Definition

TCPA _RESULT TPM LoadM grati onBl ob(
[in, out] TCPA AUTH* keySl ot Aut h,
[AUTH, in] TCPA KEY_SLOT keySl ot,

[AUTH, in] Ul NT32 outBl obMaxSi ze,
[AUTH, in] U NT32 inBl obSize,
[AUTH, in] U NT32 RandonSi ze,

[
[
[
[AUTH, in, size_is(Randontsize)] BYTE* random
i
i

[AUTH, in, size_is(inBlobSize)] BYTE* inBlob,
[AUTH, in, out] Ul NT32* outBl obSize,
[AUTH, out, size_is(*outBlobSize)] BYTE* out Bl ob);
Type
TCPA protected capability; user must provide authorization
Parameters
Type Name Description
TCPA_AUTH* keySl ot Aut h | Authorization to use the key in keySlot
TCPA_KEY_SLOT | keySl ot This SHALL be the pointer to the key to perform the unwrap
UINT32 put Bl obMaxS | This SHALL be the maximum size of the outBlob parameter
UINT32 : rZ1;I obSi ze This SHALL be the size of the inBlob parameter
UINT32 randonsi ze This SHALL be the size of the random parameter
BYTE* random This SHALL be the random string hat provides the XOR for the
area
BYTE* i nBl ob This SHALL be the encrypted and XOR migration blob
UINT32 out Bl obSi ze | This SHALL be the size of the outBlob parameter
BYTE* out Bl ob This SHALL be the normally wrapped key blob
Action

The TPM SHALL perform the following:
Validate the authorization to use the key in keySlot
Create d1 by decrypting the inBlob area using the key in keySlot
Create 02 by removing TCPA_INTERNAL_HDR from d1
Create m2 and p2hash by performing OAEP decoding of 02
Verify that p2hash equals the SHA1 of “Migration Blob” an ASCII null terminated string

Version 1.0 25 January, 2001

TCPA Main Specification Page 153

Create 01 by XOR m2 and random parameter
Create m1, seed and pHash by OAEP decoding ol
Create k1 by combining seed and the TCPA_MIGRATE_ASYMKEY .data field

Create d2 a TCPA_STORE_ASYMKEY structure by inserting pHash as the migration authorization
field. Set the TCPA_STORE_ASYMKEY.data field to k1

Create outBlob by performing TCPA_Internal_Encrypt on d2 using the key in keySlot

Return Value Description
TCPA_SUCCESS Success.
TCPA_FAIL Failure.

Version 1.0 25 January, 2001

TCPA Main Specification Page 154

7.2.14TPM_AuthorizeMigrationKey
Start of informative comment:

To allow the TPM owner to specify which migration facility they will use and allow users to migrate
information without further involvement with the TPM owner this command creates an authorization blob.

The TPM does no validation of the migration key. It is the responsibility of the TPM Owner to determine
the validity of the key and if it is appropriate for use by the TPM.

End of informative comment.

IDL Definition

TCPA RESULT TPM Aut hori zeM grati onKey(
[in, out] TCPA _AUTH* owner Aut h,
[AUTH, in] TCPA PUBKEY nigrati onKey,
[AUTH, in] Ul NT32 outBl obMaxSi ze,
[AUTH, in, out] Ul NT32* outBIl obSize,
[AUTH, out, size_is(*outBl obSize)] BYTE* outBl ob);

Type

TCPA protected capability; user must provide authorization from the TPM Owner

Parameters

Type Name Description

TCPA_AUTH* owner Aut h Authorization to use the TPM

TCPA_PUBKEY | mi grationKey This SHALL be the public key of the migration facility
UINT32 out Bl obSi ze This SHALL be the size of the outBlob parameter
BYTE* out Bl ob This SHALL be the normally wrapped key blob
Action

The TPM SHALL perform the following:
Validate the authorization to use the TPM by the TPM Owner
Create a digest value of migrationKey, TCPA_PERSISTENT_FLAGS.tpmProof
Return the TCPA_MIGRATIONKEYAUTH structure in the outblob parameter

Return Value Description
TCPA_SUCCESS Success.
TCPA_FAIL Failure.

Version 1.0 25 January, 2001

TCPA Main Specification Page 155

7.3 TPM Optional Functions: Maintenance

Start of informative comment:

Maintenance is different from backup/migration, because maintenance provides for the migration of both
migratory and non-migratory data. Maintenance is an optional TPM function, but if a TPM enables
maintenance, the maintenance capabilities in this specification are mandatory — no other migration
capabilities shall be used. Maintenance necessarily involves the manufacturer of a Subsystem.

When maintaining computer systems, it is sometimes the case that a manufacturer or its representative
needs to replace a Subsystem containing a TPM. Some manufacturers consider it a equirement that
there be a means of doing this replacement without the loss of the non-migratable keys held by the
original TPM.

The user needs assurance that the information is properly protected against interception or a hostile
manufacturer therefore the creation of the maintenance information is fully defined. Since it is inherently
NOT a process that can be performed between different models of systems, let alone different
manufacturers the process which the manufacturer uses to install maintenance information is defined only
at a high level.

Any maintenance process must have certain properties. Specifically, any migration to a replacement
Subsystem must require collaboration between the Owner of the existing Subsystem and the
manufacturer of the existing Subsystem. Further, the procedure must have adequate safeguards to
prevent a non-migratable key being transferred to multiple Subsystems.

The maintenance capabilities TPM_CreateMaintenanceArchive and TPM_LoadMaintenanceArchive
enable the transfer of all Protected Storage data from a Subsystem containing a first TPM (TPM,) to a
Subsystem containing a second TPM (TPM,):

A manufacturer places a public key in non-volatile storage into its TPMs at manufacture time.

The Owner of TPM; uses TPM_CreateMaintenanceArchive to create a maintenance archive that enables
the migration of all data held in Protected Storage by TPM;. The Owner of TPM; must provide his or her
authorization to the Subsystem. The TPM then creates the TCPA_MAINTENANCE_ASYMKEY structure
and follows the process defined.

The XOR process prevents the manufacturer from ever obtaining plaintext TPM; data.

The additional random data provides a means to assure that a maintenance process cannot subvert
archive data and hide such subversion.

The random mask can be generated by two methods, either using the TPM RNG or MGF1 on the TPM
Owners authorization data.

The manufacturer takes the maintenance blob, decrypts it with its private key, and satisfies itself that the
data bundle represents data from that Subsystem manufactured by that manufacturer. Then the
manufacturer checks the endorsement certificate of TPM, and verifies that it represents a platform to
which data from TPM; may be moved.

The manufacturer dispatches two messages.
The first message is made available to CAs, and is a revocation of the TPM; endorsement certificate.

The second message is sent to the Owner of TPM,, which will communicate the SRK, tpmProof and the
manufacturers permission to install the maintenance blob only on TPM,

The Owner uses TPM_LoadMaintenanceArchive to install the archive copy into TPM,, and overwrite the
existing TPM,-SRK and TPM,-tpmProof in TPM,. TPM, overwrites TPM,-SRK with TPM;-SRK, and
overwrites TPM,-tpmProof with TPM;-tpmProof.

Note that the command TPM_KillMaintenanceFeature prevents the operation of
TPM_CreateMaintenanceArchive and TPM_LoadMaintenanceArchive. This enables an Owner to block
maintenance (and hence the migration of non-migratory data) either to or from a TPM.

Version 1.0 25 January, 2001

TCPA Main Specification Page 156

It is required that a manufacturer takes steps that prevent further access of migrated data by TPM; This
may be achieved by deleting the existing Owner from TPM,, for example.

End of informative comment.

Any migration of non-migratory data protected by a Subsystem SHALL require the cooperation of both the
Owner of that non-migratory data and the manufacturer of that Subsystem. That manufacturer SHALL
NOT cooperate in a maintenance process unless the manufacturer is satisfied that non-migratory data will
exist in exactly one Subsystem. A TPM SHALL NOT provide capabilities that support migration of non-
migratory data unless those capabilities are described in the TCPA specification.

The maintenance feature MUST move the following
TCPA_KEY for SRK
TCPA_PERSISTENT_FLAGS.tpmProof
TPM Owners auth
Hash of PUBEK

Version 1.0 25 January, 2001

TCPA Main Specification Page 157

7.3.1 TPM_CreateMaintenanceArchive
Start of informative comment:

This command creates the MaintenanceArchive. It can only be executed by the owner, and may be shut
off with the TPM_KillMaintenanceFeature command.

End of informative comment.
IDL Definition

TCPA_RESULT TPM Cr eat eMni nt enanceAr chi ve(
[in, out] TCPA _AUTH* TpmOwner Aut h,
[AUTH, in] U NT32 ArchiveMaxSi ze,
[AUTH, in] U NT32 RandoniVaxSi ze,
[AUTH, in] BOOL GenerateRandom
[AUTH, in, out] UI NT32* ArchiveSi ze,
[AUTH, in, out] U NT32* randonSize,
[AUTH, out, size_is(*randontSize)] BYTE* RandonDat a,
[AUTH, out, size_is(*ArchiveSize)] BYTE* Archive);

Type

TCPA protected capability; user must provide authentication from the TPM Owner.

Parameters

Type Name Description

TCPA_AUTH TpmOwnerAuth Owner’s authorization to make a maintenance backup.

UINT32 ArchiveMaxSize Maximum size for archive.

UINT32 RandomMaxSize Maximum size for the random parameter

BOOL GenerateRandom This SHALL indicate if TRUE that the TPM uses the RNG to
create the random string. If FALSE the TPM uses the TPM
Owner authorization to create the random string.

UINT32* ArchiveSize Size of archive being returned.

UINT32 randomSize This SHALL be the size of the RandomData parameter, the
MUST be a minimum of 256 bytes.

BYTE* RandomData Random data to XOR with result before encrypting with
manufacturer’'s public key. Only returned when the
GenerateRandom is TRUE.

BYTE* Archive Archive being returned.

Actions

Upon authorization being confirmed this command does the following:
Validates that the TCPA_PERSISTENT_FLAGS.AllowMaintenance is TRUE.
Validates the TPM Owner authorization.
Create ml by filling in a TCPA_MAINTENANCE_ASYMKEY structure using the SRK

Create ol (which SHALL be 208 bytes for a 2048 bit RSA key) by performing the OAEP encoding of
m1 using OAEP parameters of

0O m=ml

Version 1.0 25 January, 2001

TCPA Main Specification Page 158

o P =TPM Owner authorization
0 seed =s1 = 20 bytes from the TPM RNG

If GenerateRandom = TRUE

o Create rl by obtaining values from the TPM RNG. The size of r1 MUST be the same size as
0l. Set RandomData parameter to rl

If GenerateRandom = FALSE

o Create rl by applying MGF1 to the TPM Owner authorization data. The size of r1 MUST be
the same size as o0l. Set RandomData parameter to null.

Create m2 by XOR of 01 and r1

Create 02 (which SHALL be 255 bytes for a 2048 bit RSA key) by performing the OAEP encoding of
m2 using OAEP parameters of

0 m=m2

o P =PUBEK

o seed =s2 = 20 bytes from the TPM RNG
Create f1 by filling in a TCPA_INTERNAL_HDR structure.
Create bl by concatenating f1 and 02

Encrypt bl with the TCPA_PERSISTENT_FLAGS.ManufacturerPub

Return Value Description

TCPA_SUCCESS Success.

TCPA_FAIL Failure.

TCPA_AUTHFAIL TPM Owner authorization failed.
TCPA_DISABLED The TPM is disabled
TCPA_DISABLED_CMD The AllowMaintenance flag is FALSE

Version 1.0 25 January, 2001

TCPA Main Specification Page 159

7.3.2 TPM_LoadMaintenanceArchive

Start of informative comment:

This command loads in a Maintenance archive that has been massaged by the manufacturer to load into
another TPM

End of informative comment.
IDL Definition

TCPA_RESULT TPM LoadMai nt enanceAr chi ve(
[in, out] TCPA _AUTH* TpmOwner Aut h,

)5
Type
TCPA protected capability; user must provide authentication from the TPM Owner.
Parameters
Type Name Description

TCPA_AUTH* TpmOwner Aut h Authorization for the new TPM to replace its Storage Root Key
with the one from the newPlatformDataBlob.

Remaining parameters are manufacturer specific

Actions
The TPM SHALL perform the following when executing the command
Validate the TPM Owner’s authorization

Validate that the maintenance information was sent by the TPME. The validation mechanism MUST
use a strength of function that is at least the same strength of function as a digital signature
performed using a 2048 bit RSA key.

The packet MUST contain m2 as defined in 7.3.1

Ensure that only the target TPM can interpret the maintenance packet. The protection mechanism
MUST use a strength of function that is at least the same strength of function as a digital signature
performed using a 2048 bit RSA key.

Process the maintenance information and update the SRK and
TCPA_PERSISTENT_FLAGS.tpmProof fields.

Descriptions

The maintenance mechanisms in the TPM MUST not require the TPM to hold a global secret. The
definition of global secret is a secret value shared by more than one TPM.

The TPME is not allowed to pre-store or use unique identifiers in the TPM for the purpose of
maintenance. The TPM MUST NOT use the endorsement key for identification or encryption in the
maintenance process. The maintenance process MAY use a TPM Identity to deliver maintenance
information to specific TPM's.

The maintenance process can only change the SRK and tpmProof fields.

The maintenance process can only access data in shielded locations where this data is necessary to
validate the TPM Owner, validate the TPME and manipulate the blob

The TPM MUST be conformant to the TCPA specification, protection profiles and security targets after
maintenance. The maintenance MAY NOT decrease the security values from the original security target.

Version 1.0 25 January, 2001

TCPA Main Specification Page 160

The security target used to evaluate this TPM MUST include this command in the TOE.

Return Value Description

TCPA_SUCCESS Success.

TCPA_FAIL Failure.

TCPA_AUTHFAIL TPM Owner authorization failed.
TCPA_DISABLED The TPM is disabled

Version 1.0 25 January, 2001

TCPA Main Specification Page 161

7.3.3 TPM_KillMaintenanceFeature

IDL Definition

TCPA _RESULT TPM Ki | | Mai nt enanceFeat ur e(
[in, out] TCPA AUTH* TpnOawner Aut h);

Type

TCPA protected capability; user must provide authentication from the TPM Owner.

Parameters

Type Name Description

TCPA_AUTH* | TpmOwner Aut h This command takes only one parameter: authorization by the
owner to shut off the maintenance feature.

Actions

Validate the TPM Owner authorization
Set the TCPA_PERSISTANT_FLAGS.AllowMaintenance flag to FALSE.

Return Value Description

TCPA_SUCCESS Success.

TCPA_FAIL Failure.

TCPA_AUTHFAIL TPM Owner authorization failed.
TCPA_DISABLED The TPM is disabled

Version 1.0 25 January, 2001

TCPA Main Specification Page 162

8. Cryptographic and Miscellaneous Functions

8.1 Introduction

This section describes the cryptographic functions and the miscellaneous functions that do not fit into any
specific category.

8.2 Hash Operations

Version 1.0 25 January, 2001

TCPA Main Specification

8.2.1 TSS_HashAll

The TSS_HashAll command is a TSS command that combines all three hash operations. The limitation of
this command is that the area to hash must be contiguous.

IDL Definition

TCPA_RESULT TSS_HashAl | (
[in] U NT32 Al gorithm
[in] U NT32 Al gParanti ze,
[in] U NT32 BufSize,
[in, size is(Al gParantsize)] BYTE* Al gParns,
[in, size is(BufSize)] BYTE* Buf,
[out] TCPA DI GEST* Digest);

Type
TSS function

Page 163

Parameters

Type Name Description

UINT32 Algorithm The algorithm to use

UINT32 AlgParamSize Size of the algorithm buffer

UINT32 BufSize The size of the buffer in bytes

BYTE* Buffer The buffer of information to the hash

BYTE* AlgParms The hash algorithm parameters

TCPA_DIGEST Hash The hash structure that keeps track of all state and operations
Actions

The TSS HashAll command calls TSS_ Hashlnit, TSS_HashUpdate, and TSS_HashFinal. This command
hashes a contiguous buffer in only one call.

Return Value

Description

TCPA_SUCCESS

Operation completed successfully.

TCPA_FAIL

A critical internal error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 164

8.2.2 TSS_Hashlnit

The TSS_Hashlnit command starts the hash process.

IDL Definition
TCPA RESULT TSS Hashl nit (
[in] U NT32 Al gorithm
[in] U NT32 Al gParanti ze,
[in, size is(Al gParantsize)] BYTE* Al gParns,
[out] TSS HASHHANDLE* HashHandl e);

Type
TSS function

Parameters

Type Name Description

UINT32 Algorithm The algorithm to use

UINT32 AlgParamSize Size of the algorithm buffer

BYTE* AlgParms The hash algorithm parameters

TSS_HASHHANDLE HashHandle The handle that the TSS uses to locate the internal
information regarding this hash operation

Actions

The command validates the algorithm and parameters for the algorithm. There are no parameters for
SHAL.

The command generates the structures and states to keep track of the hash operations.

Return Value Description

TCPA_SUCCESS Operation completed successfully.
TCPA_SIZE There are too many open hash handles.
TCPA_FAIL A critical internal error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 165

8.2.3 TSS_HashUpdate
The TSS_HashUpdate command adds additional text to the hash.

IDL Definition

TCPA RESULT TSS HashUpdat e(
[in] TSS HASHHANDLE HashHandl e,
[in] U NT32 BufSize,
[in, size is(BufSize)] BYTE* Buf);

Type
TSS function

Parameters

Type Name Description

TSS_HASHHANDLE HashHandle | Handle to the hash structure

UINT32 BufSize The size of the buffer in bytes.
BYTE* Buf The buffer of information to add to the hash.
Actions

The command locates the internal structures and state using the handle. The command adds the buffer of
information to the hash. The TPM keeps the intermediate state of the hash as part of the internal
structures.

Return Value Description

TCPA_SUCCESS Operation completed successfully.
TCPA_INVALID_HANDLE Invalid hash handle.

TCPA_FAIL A critical internal error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 166

8.2.4 TSS_ HashFinal
The TSS_HashFinal command completes the hash process.
IDL Definition

TCPA _RESULT TSS_HashFi nal (
[in] TSS_HASHHANDLE HashHandl e,
[out] TCPA DI GEST* Digest);

Type
TSS function

Parameters

Type Name Description

UINT32 HashHandle The size of the result in bytes.

TCPA_DIGEST Hash The result of the hash operation

Actions

The TSS_HashFinal command takes the intermediate state and performs the final steps of the hash
algorithm to obtain the output.

Return Value Description

TCPA_SUCCESS Operation completed successfully.
TCPA _INVALID _HANDLE Invalid hash handle.

TCPA_FAIL A critical internal error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 167

8.3 HMAC Commands

The TSS MUST support the HMAC using the SHA-1 hashing operation and protocol as defined by RFC
2104.

Algorithms defined
#define TSS_ALG HVAC 0x00000002

Version 1.0 25 January, 2001

TCPA Main Specification Page 168

8.3.1 TSS_HMACAII

The TSS_HMACAIl command is a TSS command that combines all three HMAC operations. The
limitation of this command is that the area to hash must be contiguous.

IDL Definition

TCPA_RESULT TSS_HVACAI | (
[in] U NT32 Al gorithm
[in] U NT32 SecretSize,
[in] U NT32 BufSize,
[in] U NT32 Al gParnti ze,
[in, size_is(SecretSize)] BYTE* Secret,
[in, size_is(BufSize)] BYTE* Buf,
[in, size_is(Al gParntize)] BYTE* Al gParns,
[out] TCPA DI GEST* HVAC) ;

Type
TSS function

Parameters

Type Name Description

UINT32 Algorithm Algorithm to create the HMAC

UINT32 SecretSize Size of the secret area

UINT32 BufSize The size of the buffer to hash in bytes
UINT32 AlgParmSize The size of the algorithm parameters in bytes
BYTE* Secret Secret value used in HMAC calculation
BYTE* Buffer The buffer of information to add to the hash.
BYTE* AlgParms The parameters for the HMAC operation
TCPA_DIGEST HMAC The resulting HMAC operation.

Actions

The TSS HMACAI command calls TSS HMACInit, TSS_HMACUpdate, and TSS_HMACFinal
operations. This command is just for convenience.

Return Value Description
TCPA_SUCCESS Operation completed successfully.
TCPA_FAIL A critical internal error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 169

8.3.2 TSS_HMACInit

The TSS_Hashlnit command starts the HMAC process.
IDL Definition

TCPA_RESULT TSS_HVACI ni t (
[in] U NT32 Algorithm
[in] U NT32 SecretSize,
[in] U NT32 Al gParnti ze,
[in, size_is(SecretSize)] BYTE* Secret,
[in, size_is(Al gParntize)] BYTE* Al gParns,
[out] TSS HVACHANDLE* HmacHandl e);

Type
TSS function

Parameters

Type Name Description

UINT32 Algorithm Algorithm to create the HMAC

UINT32 SecretSize Size of the secret area

UINT32 AlgParmSize The size of the algorithm parameters in bytes

BYTE* Secret Secret value used in HMAC calculation

BYTE* AlgParms The parameters for the HMAC operation
TSS_HMACHANDLE* HmacHandle The handle for the HMAC internal structures and states
Actions

The TPM validates the algorithm and the algorithm parameters. The TPM then validates the authorization
using the pubkey parameter and the authorization structure. The authorization type MUST be OSAP, as
the authorization must be continued for the remaining HMAC operations.

The TPM creates the structures and states necessary to process the remaining HMAC erations and
generates a handle to track the information.

The TPM has an internal limit as to the number of handles that may be open at one time, so the request
for a new handle may fail if there is insufficient space available.

Return Value Description
TCPA_SUCCESS Operation completed successfully.
TCPA_FAIL A critical internal error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 170

8.3.3 TSS_HMACUpdate
The TSS_HashUpdate command adds additional information to the HMAC calculation.
Definition

TCPA_RESULT TSS_HVACUpdat e(
[in] TSS HVACHANDLE HmacHandl e,
[in] U NT32 BufSize,
[in, size is(BufSize)] BYTE* Buf);

Type
TSS function

Parameters

Type Name Description

TSS_HMACHANDLE HmacHandle The hash structure that keeps track of all state and
operations.

UINT32 BufSize The size of the buffer in bytes.

BYTE* Buffer The buffer of information to add to the hash.

Actions
The TSS locates the structures and states using the handle.

The TSS adds the information in the buffer to the hash and saves the intermediate hash state in the TSS.

Return Value Description

TCPA_SUCCESS Operation completed successfully.
TCPA_INVALID_HANDLE Invalid HMAC handle.

TCPA_FAIL A critical internal error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification

8.3.4 TSS_HMACFinal
The TSS_HashFinal command completes the HMAC process.

Definition

TCPA_RESULT TSS_HVACFi nal (

Page 171

[in] TSS HVACHANDLE HmacHandl e,
[out] TCPA DI GEST* HWVAC);

Type
TSS function

Parameters

Type Name Description

TSS_HMACHANDLE HmacHandle The hash structure that keeps track of all state and
operations.

TCPA_DIGEST HMAC The resulting HMAC operation.

Actions

The TSS locates the structures and states using the handle.

The TSS then takes the intermediate state of the hash and performs the final steps of both the hash and
HMAC process. The resulting HMAC value is returned in the HMAC parameter.

The TSS destroys all structures and states relating to the HMAC including the secret value.

Return Value

Description

TCPA_SUCCESS

Operation completed successfully.

TCPA_INVALID_HANDLE

Invalid HMAC handle.

TCPA_FAIL

A critical internal error occurred.

Version 1.0 25 January,

2001

TCPA Main Specification Page 172

8.4 Key Certification

8.4.1 TPM_CertifyKey
Start of informative comment:

The TPM_CERTIFYKEY operation allows an identity key to certify the public portion of certain storage
and signing keys. TPM_CERTIFYKEY is allowed only for non-migratable keys. As such, it allows the TPM
to make the statement “this key is held in a TCPA-shielded location, and it will never be revealed.” For
this statement to have veracity, the Challenger must trust the policies used by the Privacy CA that issued
the identity and the maintenance policy of the TPM manufacturer.

The key to be certified must be loaded before TPM_CertifyKey is called.

TPM_CERTIFYKEY and QUOTE are the only operations that use TPM identity keys, apart from those
operations used to acquire identities.

End of informative comment.
IDL Definition

TCPA_RESULT TPM Certi fyKey(
[in, out] TCPA_AUTH* I Daut h,
[in, out] TCPA AUTH* Certi fyKeyAut h,
[AUTH, in] U NT32 Bl obMaxSi ze,
[AUTH, in] TCPA_KEY_SLOT KeyToCertify,
[AUTH, in] TCPA _KEY_SLOT | dKey,
[AUTH, in] TCPA DI GEST External Dat a,
[AUTH, in, out] U NT32* Bl obSi ze,
[AUTH, out, size_is(*BlobSize)] BYTE* Bl ob,
[AUTH, out] TCPA _CERTI FY_I NFO* Si gnHeader);
Type

TCPA protected capability; user must authorize the use of key pointed to by IdKey and the key pointed to
by KeyToCertify.

Parameters

Type Name Description

TCPA_AUTH | DAut h Authorization data for the IdKey parameter

TCPA_AUTH ([;Jert i fyKeyAut | Authorization data for the CertifyKeyAuth parameter

UINT32 Bl obMaxSi ze Maximum permissible size of the outgoing blob.

TCPA_KEY_SLOT KeyToCertify Key to be certified

TCPA_KEY_SLOT | dKey The key that will sign the new key. This MUST be a
TPM identity key

TCPA_DIGEST Ext er nal Dat a 160-bits of externally supplied data (typically a nonce to
prevent replay attacks).

UINT32* Bl obSi ze Size of the outgoing blob

BYTE* Bl ob Pointer to memory that is to receive the signed data
blob.

TCPA_CERTIFY_INFO Si gnHeader Information that defines how the signature was done

Version 1.0 25 January, 2001

TCPA Main Specification Page 173

Actions
The TPM validates that the key pointed to by idKey is an Identity Key.
The TPM verifies the authorization in IDAuth provides authorization to use the key pointed to by idKey.

The TPM verifies the authorization in CertifyKeyAuth provides authorization to use the key pointed to by
KeyToCertify.

The TPM SHALL verify that the key pointed to ly KeyToCertify can successfully perform an encryption
and decryption of a nonce from the TPM RNG.

The TPM SHALL create a TCPA_CERTIFY_INFO (defined in section 4.19) structure from the key pointed
to by KeyToCertify.

The TPM calculates the digest of the KeyToCertify public key and stores it in the pubkeyDigest field of the
TCPA_CERTIFY_INFO structure.

The TPM assembles the externally provided data in the TCPA_CERTIFY_INFO structure’s Data
parameter.

If the IsWrappedToPCR field of the key being certified is TRUE,

The TPM MUST store the pcrDigest field of the key being certified in the DigestValue field of the
TPM_CERTIFY_INFO structure.

If the IsWrappedToPCR field of the key being certified is FALSE,

The TPM MUST set the IsWrappedToPCR field of the TPM_CERTIFY_INFO structure to FALSE, and the
TPM MUST set the pcrList.pcrCount field to 0, and the DigestValue field to 0.

The TPM then performs a TPM_Internal_Signature (See 8.16.2) on the signHeader parameter using the
key pointed to by idKey. The resulting signed blob is returned in signatureBlob.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_INVALID_HANDLE The key slot identifiers do not point to valid loaded keys

TCPA_BADPARAMETER One or more parameters were bad.

TCPA_BUFSIZE The output buffer is too small. *BlobSize is set to the size required.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

Version 1.0 25 January, 2001

TCPA Main Specification Page 174

8.5 Symmetric Encryption

Version 1.0 25 January, 2001

TCPA Main Specification Page 175

8.5.1 TSS_EncryptAll

The TSS_EncryptAll command calls Init, Update and Final. The reason for this command is to provide a
single call to the TSS for symmetric encryption.

IDL Definition

TCPA _RESULT TSS_Encrypt Al | (
[in] U NT32 Al gorithm
[in] U NT32 KeySi ze,
[in] U NT32 RedSize,
[in] U NT32 MaxBl ackSi ze,
[in] U NT32 Al gParnti ze,
[in, size_is(Al gParntize)] BYTE* Al gParns,
[in, size_is(KeySize)] BYTE* Key,
[in, size_is(RedSize)] BYTE* RedArea,
[in, out] U NT32* Bl ackSi ze,
[out, size_is(*BlackSize)] BYTE* Bl ackArea);

Type

TSS function

Parameters

Type Name Description

UINT32 Al gorithm The encryption algorithm to use
UINT32 KeySi ze Size of the key.

UINT32 RedSi ze The size of the plaintext (red bits).
UINT32 MaxBl ackSi ze The maximum size of the output (black bit) area.
UINT32 Al gPar nSi ze Size of the algorithm parameters
BYTE* Al gPar ns Parameters for the algorithm
BYTE* Key The key for the encryption

BYTE* RedAr ea The plain text

UINT32* Bl ackSi ze The size of the output

BYTE* Bl ackAr ea The encrypted text

Actions

The command creates the TSS internal encryption handle and reserves any memory that the encryption
process will require. The TSS fills in the TCPA_ENCRYPT structure with the handle and the block size for
the algorithm.

The setup process includes any processing d the key into the various structures that the encryption
process will require.

Return Value Description

TCPA_SUCCESS Operation completed successfully.
TCPA_INVALID _HANDLE Unable to create handle
TCPA_FAIL A critical internal error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 176

8.5.2 TSS_Encryptlnit

Encryptlnit starts the encryption process.
IDL Definition

TCPA_RESULT TSS_Encrypt!Init(
[in] U NT32 Algorithm
[in] U NT32 KeySi ze,
[in] U NT32 Al gParnti ze,
[in, size_is(Al gParntize)] BYTE* Al gParns,
[in, size_is(KeySize)] BYTE* Key,
[out] TCPA_ENCHANDLE* Encrypt Handl e);

Type
TSS function

Parameters

Type Name Description

UINT32 Al gorithm The encryption algorithm to use

UINT32 KeySi ze Size of the key.

UINT32 Al gPar nSSi ze Size of the algorithm parameters

BYTE* Al gPar s Parameters for the algorithm

BYTE* Key The key for the encryption

TCPA_ENCHANDLE Encrypt Handl e | The handle for the internal states and structures
Actions

The TSS validates the algorithm and any algorithm parameters. The TSS then creates the internal
structures and states to manage the encryption process.

The TSS uses the key to perform any key setup tasks. The TSS may keep the key in internal memory or it
may destroy the key.

Return Value Description

TCPA_SUCCESS Operation completed successfully.
TCPA_INVALID_HANDLE Invalid hash handle.

TCPA_FAIL A critical internal error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 177

8.5.3 TSS_EncryptUpdate

The EncryptUpdate command encrypts the block of redbits.
IDL Definition

TCPA_RESULT TSS_Encrypt Updat e(
[in] TCPA_ENCHANDLE Encrypt Handl e,
[in] U NT32 RedSi ze,
[in] U NT32 MaxBl ackSi ze,
[in, size_is(RedSize)] BYTE* RedArea,
[in, out] U NT32* Bl ackSi ze,
[out, size_is(*BlackSize)] BYTE* Bl ackArea);

Type

TSS function

Parameters

Type Name Description

TCPA_ENCHANDLE Encrypt Handl e The handle that points to the internal structures and
state

UINT32 RedSi ze The size of the input area (or red bits).

UINT32 MaxBl ackSi ze Maximum size of the output area

BYTE* Redar ea The input area (red bits).

UINT32* Bl ackSi ze The size of the output area (or black bits).

BYTE* Bl ackar ea The output area (black bits).

Actions

The TSS validates the handle and locates the structures and states for the encryption process. The input
area must be the same size as the block for the encryption algorithm. The function encrypts the input and
returns the encrypted area.

Return Value Description

TCPA_SUCCESS Operation completed successfully.
TCPA _INVALID _HANDLE Invalid hash handle.

TCPA_FAIL A critical internal error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 178

8.5.4 TSS_EncryptFinal

The EncryptFinal command completes the encryption process.
IDL Definition

TCPA RESULT TSS Encrypt Fi nal (
[in] TCPA _ENCHANDLE Encrypt Handl e,
[in] U NT32 MaxBl ackSi ze,
[in, out] U NT32* Bl ackSi ze,
[out, size_is(*BlackSize)] BYTE* Bl ackArea);

Type
TSS function.

Parameters

Type Name Description

TCPA_ENCHANDLE Encrypt Handl e | The handle that points to the internal structures and
state

UINT32 MaxBl ackSi ze Maximum size of the output area

UINT32* Bl ackSi ze The size of the output area (or black bits).

BYTE* Bl ackar ea The output area (black bits).

Actions

The command completes the encryption process and deletes the encryption handle. All memory
associated with the handle is deleted.

For most algorithms, there is no output for this command.

Return Value Description

TCPA_SUCCESS Operation completed successfully.
TCPA_INVALID_HANDLE Invalid handle.

TCPA_FAIL A critical internal error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 179

8.5.5 TSS_ DecryptAll

The TSS_DecryptAll command calls Init, Update and Final. The reason for this command is to provide a
single call to the TPM if a provider is using the TPM for symmetric decryption.

IDL Definition

TCPA _RESULT TSS_ Decrypt Al l (
[in] U NT32 Al gorithm
[in] U NT32 KeySi ze,
[in] U NT32 Bl ackSi ze,
[in] U NT32 MaxRedSi ze,
[in] U NT32 Al gParnti ze,
[in, size_is(Al gParntize)] BYTE* Al gParns,
[in, size_is(KeySize)] BYTE* Key,
[in, size_is(BlackSize)] BYTE* Bl ackArea,
[in, out] U NT32* RedSi ze,
[out, size_is(*RedSize)] BYTE* RedArea);

Type

TSS function

Parameters

Type Name Description

UINT32 Al gorithm The decryption algorithm to use

UINT32 KeySi ze Size of the key.

UINT32 Bl ackSi ze The size of the encrypted text (black bits).
UINT32 MaxRedSi ze The maximum size of the output (red bit) area.
UINT32 Al gPar nSi ze Size of the algorithm parameters

BYTE* Al gPar ns Parameters for the algorithm

BYTE* Key The key for the decryption

BYTE* Bl ackAr ea The plain text

UINT32* RedSi ze The size of the output

BYTE* RedAr ea The decrypted text

Actions

The command creates the TPM internal decryption handle and reserves any memory that the decryption
process will require. The TPM fills in the TCPA_ENCRYPT structure with the handle and the block size
for the algorithm.

The setup process includes any processing of the key into the various structures that the decryption
process will require.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_INVALID _HANDLE Unable to create handle

TCPA_FAIL A critical internal error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 180

8.5.6 TSS_Decryptlinit

Decryptinit starts the decryption process.
IDL Definition

TCPA_RESULT TSS Decryptlnit(
[in] U NT32 Algorithm
[in] U NT32 KeySi ze,
[in] U NT32 Al gParnti ze,
[in, size_is(Al gParntize)] BYTE* Al gParns,
[in, size_is(KeySize)] BYTE* Key,
[out] TCPA_ENCHANDLE* Decrypt Handl e);
Type
TSS function

Parameters

Type Name Description

UINT32 Al gorithm The decryption algorithm to use

UINT32 KeySi ze Size of the key.

UINT32 Al gPar nSSi ze Size of the algorithm parameters

BYTE* Al gPar s Parameters for the algorithm

BYTE* Key The key for the Decryption
TCPA_ENCHANDLE Decr ypt Handl e | The handle for the internal states and structures
Actions

The TSS validates the algorithm and any algorithm parameters. The TSS then creates the internal
structures and states to manage the decryption process.

The TSS uses the key to perform any key setup tasks. The TSS may keep the key in internal memory or it
may destroy the key.

Return Value Description

TCPA_SUCCESS Operation completed successfully.
TCPA_INVALID_HANDLE Invalid hash handle.

TCPA_FAIL A critical internal error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification

8.5.7 TSS_DecryptUpdate
The DecryptUpdate command decrypts the block of black bits.

IDL Definition

TCPA_RESULT TSS_ Decrypt Updat e(
[in] U NT32 DecryptHandl e,
[in] U NT32 Bl ackSi ze,

Page 181

[in, size_is(BlackSize)] BYTE* Bl ackArea,
[in] U NT32 MaxRedSi ze,
[in, out] U NT32* RedSize,
[out, size_is(*RedSize)] BYTE* RedArea);
Type
TSS function.
Parameters
Type Name Description

TCPA_ENCHANDLE

Decr ypt Handl e

The handle that points to the internal structures and
state

UINT32 Bl ackSi ze The size of the input area (or black bits).
UINT32 MaxRedSi ze Maximum size of the output area
BYTE* Bl ackAr ea The input area (black bits).

UINT32* RedSi ze The size of the output area (or red bits).
BYTE* RedAr ea The output area (red bits).

Actions

The TSS validates the handle and locates the structures and states for the decryption process. The input
area must be the same size as the block for the decryption algorithm. The function decrypts the input and

returns the decrypted area.

Return Value

Description

TCPA_SUCCESS

Operation completed successfully.

TCPA_INVALID_HANDLE

Invalid hash handle.

TCPA_FAIL

A critical internal error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 182

8.5.8 TSS_ DecryptFinal

The DecryptFinal command completes the Decryption process.
IDL Definition

TCPA_RESULT TSS_Decrypt Fi nal (
[in] TCPA _ENCHANDLE Decrypt Handl e,
[in] U NT32 MaxRedSi ze,
[in, out] Ul NT32* RedSi ze,
[out, size_is(*RedSize)] BYTE* RedArea);

Type
TSS function.

Parameters

Type Name Description

TCPA_ENCHANDLE Decrypt Handl e | The handle that points to the internal structures and
state

UINT32 MaxRedSi ze Maximum size of the output area

UINT32* RedSi ze The size of the output area (or red bits).

BYTE* RedAr ea The output area (red bits).

Actions

The command completes the decryption process and deletes the decryption handle. All memory
associated with the handle is deleted.

For most algorithms, there is no output for this command.

Return Value Description

TCPA_SUCCESS Operation completed successfully.
TCPA_INVALID_HANDLE Invalid handle.

TCPA_FAIL A critical internal error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 183

8.6 Digital Signatures

8.6.1 TPM_Sign
Start of informative comment:

The Sign command signs a digest and returns the resulting digital signature. This command uses a
properly authorized signature key.

End of informative comment.
IDL Definition

TCPA_RESULT TPM Si gn(
[in, out] TCPA_AUTH* PubAut h,
[AUTH, in] TCPA KEY_SLOT KeySl ot,
[AUTH, in] TCPA DI GEST D gest,
[AUTH, in] U NT32 MaxSi gnSi ze,
[AUTH, in, out] U NT32* SignSize,
[AUTH, out] TCPA _VERSI ON* ver,
[AUTH, out, size_is(*SignSize)] BYTE* SignArea);

Type

TCPA protected capability; user must provide authorization to use the keySlot parameter.

Parameters

Type Name Description

TCPA_AUTH PubAut h The authorization structure that authorizes the use of keySlot.

TCPA_KEY_SLOT | KeySlI ot T_he keySlot identifier of a loaded key that can perform digital
signatures.

TCPA_DIGEST Di gest The digest value to sign

UINT32 MaxSi gnSi ze | The maximum size of the output buffer

UINT32* Si gnSi ze The length of the signArea

TCPA_VERSION ver This SHALL be a properly filled out version structure. See 4.5

BYTE* Si gnAr ea The resulting digital signature.

Actions

The TPM validates the authorization to use the key pointed to by keySlot. The TPM validates that the key
pointed to by keySlot is allowed to perform digital signatures.

The TPM uses the Digest parameter as input to the PKCS#1 v2.0 RSAES_OAEP encoding scheme.
The TPM encrypts the encoded area using the private key pointed to by keySlot.

Return Value Description

TCPA_SUCCESS Operation completed successfully.
TCPA_INVALID_HANDLE Invalid handle.

TCPA_FAIL A critical internal error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 184

8.6.2 TSS_ VerifySignature

VerifySignature takes a hash and verifies the digital signature of the hash. VerifySignature only returns a
TRUE or FALSE answer. The caller does not receive any information as to the reason for a failure.

IDL Definition

TCPA_RESULT TSS Veri fySi gnat ure(
[in] U NT32 SiglLen,
[in] TCPA DI GEST Di gest,
[in] TCPA _PUBKEY Pubkey,
[in, size is(SigLen)] BYTE* Signature);

Type
TSS capability

Parameters

Type Name Description

UINT32 Si gLen The length of the signature area.
TCPA DIGEST Di gest Hash to verify

TCPA_PUBKEY Pubkey Identifier of key loaded in TPM
BYTE* Si ghat ure Signature blob to verify

Actions

The TPM loads the signature blob. The TPM decrypts the signature blob. The TPM then removes the
PKCS #1 padding and compares the digest parameter to the signed value. If they are the same the TPM
returns TCPA_SUCCESS otherwise the TPM returns TCPA_FAIL. The TPM MUST NOT give out any
additional information regarding the verification failure.

Return Value Description
TCPA_SUCCESS Operation completed successfully.
TCPA_FAIL A critical internal error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 185

8.7 Random Numbers

Version 1.0 25 January, 2001

TCPA Main Specification Page 186

8.7.1 TPM_GetRandom

GetRandom returns the next n bytes from the random number generator to the caller.
IDL Definition

TCPA _RESULT TPM Get Randon
[in] U NT32 BytesRequested,
[out, size is(BytesRequested)] BYTE* Bl ob);

Type
TCPA protected capability.

Parameters

Type Name Description

UINT32 Byt esRequest ed | The number of bytes to return. The maximum size is 256 bytes.
BYTE* Bl ob The output of the random bytes

Actions

This command fills in the random buffer with the next n bytes from the random number generator.

Return Value Description
TCPA_SUCCESS Operation completed successfully.
TCPA_FAIL A critical internal error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 187

8.7.2 TPM_StirRandom
StirRandom adds entropy to the RNG state.
IDL Definition

TCPA_RESULT TPM Sti r Random(
[in] U NT32 Bl obSi ze,
[in, size is(BlobSize)] BYTE* Bl ob);

Type
TCPA protected capability.

Parameters

Type Name Description

UINT32 Bl obSi ze The size of the area

BYTE* Bl ob The area of data that will add entropy to the RNG state.
Actions

The TPM updates the state of the current RNG using the appropriate mixing function.

Return Value Description
TCPA_SUCCESS Operation completed successfully.
TCPA_FAIL A critical internal error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 188

8.8 Self Test

Version 1.0 25 January, 2001

TCPA Main Specification

8.8.1 TPM_SelfTestFull

Start of informative comment:

SelfTestFull tests all of the TCPA protected capabilities.
End of informative comment.

IDL Definition

TCPA_RESULT TPM Sel f Test Ful | (
[out] U NT32* manuf acturerBi gSecret);

Page 189

Type

TCPA protected capability

Parameters

Type Name Description

UINT32* | manuf act ur er Bi gSecr et Manufacturer specific information
Actions

Performs the self-test for each functionality of the TPM.

Failure of only one function results in a failure for all and the TPM goes into failure mode.

Return Value Description
TCPA_SUCCESS The device passed all tests.
TCPA_FAIL The device failed one or more tests.

Version 1.0 25 January, 2001

TCPA Main Specification

8.8.2 TPM_SelfTestStartup

Start of informative comment:

SelfTestFull performs the same tests that are done at startup.
End of informative comment.

Definition

TCPA RESULT TPM Sel f Test Start up(
[out] U NT32* nmanufacturerBi gSecret);

Page 190

Type

TCPA protected capability

Parameters

Type Name Description

UINT32* | manuf act ur er Bi gSecr et Manufacturer specific information
Actions

The TPM SHALL perform all required self-tests from section 10.8.1.

Failure of only one function results in a failure for all and the TPM goes into failure mode.

Return Value Description
TCPA_SUCCESS The device passed all tests.
TCPA_FAIL The device failed one or more tests.

Version 1.0 25 January, 2001

TCPA Main Specification Page 191

8.8.3 TPM_CertifySelfTest
IDL Definition

TCPA_RESULT TPM CertifySel f Test (
[in, out] TCPA_AUTH* PubAut h,
[AUTH, in] TCPA_KEY_SLOT keySl ot,
[AUTH, in] U NT32 MaxBl obSi ze,
[AUTH, in, out] U NT32* Bl obSi ze,
[AUTH, out] U NT32* manufacturerBi gSecret,
[AUTH, out, size_is(*BlobSize)] BYTE* Bl ob);

Type
TCPA protected capability; user must provide authorization to use the keySlot parameter.

Parameters
Type Name Description
TCPA_AUTH Aut hDat a Authorization to use the key pointed to by pubKey
TCPA_KEY_SLOT | keySl ot Slot where key that will perform signature is loaded
UINT32 MaxBl obSi ze Maximum size of the blob.
UINT32* Bl obSi ze Set to the size of the returned blob.
BYTE* Bl ob Pointer to memory that is to receive the signed data blob.
UINT32* manuf act urer Bi g | Manufacturer specific information

Secr et
Actions

The TPM SHALL perform TPM_SelfTestFull.

After successful completion of the selftest the TPM then validates the authorization to use the key
pointed to by keySlot.

The TPM creates a hash of the two nonce values associated with the authorization and signs the hash
using the key identified by keySlot.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_BAD_PARAMETER One or more parameters were bad.

TCPA_BUFSIZE The output buffer is too small. *SigBlobActualSize is set to the size
required.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

Version 1.0 25 January, 2001

TCPA Main Specification Page 192

8.9 Reset and Clear Operations

The TPM MUST support the reset operation. The reset operation clears all handles, sessions and volatile
state machines. The reset MUST NOT affect the SRK, PCR and flags such as the flag set by
TPM_DisableForceClear.

The TPM MUST support the clear operations. The clear operation MUST perform the following actions:
Perform a reset operation
Delete the SRK
Reset all non-volatile values to factory default except the endorsement key pair
Return TCPA_NOSRK until there is a proper execution of the ownership function

The TPM MUST support disabling the clear operations. After execution of the TPM_DisableOwnerClear
the TPM MUST require physical access to execute the TPM_ForceClear. The TPM MUST support the
TPM_DisableForceClear to disable the TPM_ForceClear command. The TPM_DisableForceClear
command MUST execute on each startup cycle to be effective.

Version 1.0 25 January, 2001

TCPA Main Specification Page 193

8.9.1 TPM_Reset

Start of informative comment:

In the case that a TSS driver loses track of the internal state of the TPM this command allows the driver to
reset the TPM to a well-known state.

End of informative comment.
IDL Definition
TCPA RESULT TPM Reset();

Type

TCPA protected capability.

Parameters

None

Actions

The TPM deletes handles to all items in the TPM. This includes hash, HMAC and authorization sessions.
The TPM destroys all memory associated with any session. This includes secrets, nonces and state.
The TPM does not reset any PCR or DIR values.

The TPM does not reset any flags in the TCPA_VOLATILE_FLAGS structure.

Return Value Description
TCPA_SUCCESS Operation completed successfully.
TCPA_FAIL An internal error occurred, or POST or a previous self-test failed

Version 1.0 25 January, 2001

TCPA Main Specification Page 194

8.9.2 TPM_Init

Start of informative comment:

TPM_Init destroys most information on a TPM but will not unload keys that are both non-volatile and
independent of keys bound to a PCR. This permits keys to be loaded for use during the next boot
sequence.

End of informative comment.

Definition
TPM I nit

Type

TCPA protected capability that requires physical indication from the platform
Parameters

None

Actions

1. If a key in a key slot has the PCRParent indicator set to TRUE or the IsWrappedToPCR is TRUE
or IsVolatile set to TRUE, the key MUST be unloaded. All other keys MUST remain in their key
slots.

2. The TPM performs a TPM_Reset.

3. The TPM performs all normal startup operations. These operations include resetting PCR values
and all TCPA_VOLATILE_FLAGS.

The platform MUST be designed such that if the TPM_Init signal is asserted the entire Platform MUST be
initialized. This prevents, at least with a minimum effort, someone touching the TPM_Init pin on the TPM
and resetting only the TPM.

The TPM_Init signal MUST have signaling qualifications appropriate for the required conformance and
Protection Profile for the Platform.

Version 1.0 25 January, 2001

TCPA Main Specification Page 195

8.9.3 TPM_SaveState

Start of informative comment:

This warns a TPM to save some state information.

If a TPM’s shielded storage is non-volatile, this command need have no effect.

If a TPM’s shielded storage is volatile and the TPM alone is unable to detect the loss of external power in
time to move data to non-volatile memory, this command should be presented before the TPM enters a
low or no power state.

End of informative comment.

Definition
TCPA _RESULT TPM SaveState();

Type

TCPA protected capability

Parameters

None

Actions

The contents of all PCRs MUST be preserved.

The contents of any key slot that is currently loaded SHOULD be preserved if the key's PCRParent
indicator is FALSE and its IsWrappedToPCR indicator is FALSE and its IsVolatile indicator is FALSE. The
contents of any key slot that is currently loaded MAY be preserved if its PCRParent indicator is TRUE or
its IsWrappedToPCR indicator is TRUE or its IsVolatile indicator is TRUE.

Values MUST be preserved in their original shielded locations or as copies in other shielded locations.
Preserved values MUST be non-volatile.

If the parameter mirrored by a preserved value is altered by a protected capability other than TPM_INIT,
the preserved value MUST be declared invalid. If the parameter mirrored by any preserved value is
altered by a protected capability other than TPM_INIT, all preserved values MAY be declared invalid.

Return Value Description
TCPA_SUCCESS Operation completed successfully.
TCPA_BUSY The TPM is too busy to do the command.

Version 1.0 25 January, 2001

TCPA Main Specification Page 196

8.9.4
Start of

TPM_Startup

informative comment:

Upon receipt of a TPM_Init, the Platform may be in a power-on state or may be resuming from a
suspended state. Some trusted entity will determine the startup state and must inform the TPM of the

State.

End of informative comment.

Definition
TCPA RESULT TPM St art up(

Type

[in] TCPA _STARTUP_TYPE st Type);

TCPA protected capability

Parameters

Type

Name Description

TCPA_STARTUP_TYPE | stType This SHALL indicate the type of startup that is occurring

Actions

TPM_Startup MUST be generated by a trusted entity (the RTM or the TPM, for example).

TPM_Startup MUST be presented to a TPM after a TPM_Init command and prior to presentation of any
other TPM command except TPM_GetCapability.

If a TPM command, other than one or more TPM_GetCapability commands, is executed after the
TPM_Init command and prior to the first TPM_Startup command, the TPM MUST invalidate all preserved
states, and enter an error state where only the TPM_GetCapability command functions until another
TPM_Init command is issued.

If stType = TCPA_ST_CLEAR

1.

The TPM SHALL invalidate any preserved states and resume normal operation.

If stType = TCPA_ST_STATE

1. The TPM SHALL take all necessary actions to ensure that all PCRs contain valid preserved
values. If the TPM is unable to successfully complete these actions, it SHALL enter the TPM
failure mode.

2. The TPM SHALL take all necessary actions to ensure that a key slot contains the preserved
value of that key slot if the preserved value is valid and the preserved value's PCRParent
indicator is FALSE and its IsWrappedToPCR indicator is FALSE and its IsVolatile indicator is
FALSE. All other key slots MUST be unloaded. If the TPM is unable to successfully complete
these actions, it SHALL enter the TPM failure mode.

3. The TPM SHALL invalidate any preserved values. If the TPM is unable to successfully complete
this action, it SHALL enter the TPM failure mode

4, The TPM resumes normal operation. If the TPM is unable to resume normal operation, it SHALL
enter the TPM failure mode.

Return Value Description

TCPA_SUCCESS Operation completed successfully.
TCPA_FAIL The operation failed

Version 1.0 25 January, 2001

TCPA Main Specification Page 197

8.9.5 TPM_OwnerClear

Start of informative comment:

The OwnerClear command performs the clear operation under Owner authorization. This command is
available until the Owner executes the DisableOwnerClear, at which time any further invocation of this
command returns TCPA_CLEAR_DISABLED.

End of informative comment.
IDL Definition

TCPA_RESULT TPM Owner Cl ear (
[in, out] TCPA AUTH* TpmOwner Aut h);

Type

TCPA protected capability; user must provide authorization as the TPM Owner.
Parameters

Type Name Description

TCPA_AUTH* TpnOwner Aut h Authorization data for the Owner
Actions

The TPM verifies that the TpmOwnerAuth properly authorizes the owner.

After owner verification the TPM then checks the status of the
TCPA_PERSISTENT_FLAGS.DisableOwnerClear flag, if set the TPM returns
TCPA _CLEAR_DISABLED.

The TPM executes the TPM_Reset command. The TPM then destroys the SRK and any internal data
associated with the SRK. The TPM then destroys the TPM Ownership data.

The result will be no Owner or SRK and the TPM is set to the state where it returns TCPA_NOSRK.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_NOSRK There is no Owner and no SRK value is available.

TCPA_CLEAR_DISABLED The DisableOwnerClear command has turned off the ability for the
OwnerClear command to execute.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

Version 1.0 25 January, 2001

TCPA Main Specification Page 198

8.9.6 TPM_DisableOwnerClear
Start of informative comment:

The DisableOwnerClear command disables the ability to execute the TPM_OwnerClear command
permanently. Once invoked the only method of clearing the TPM will require physical access to the TPM.

End of informative comment.
IDL Definition

TCPA RESULT TPM Di sabl eOmer d ear (
[in, out] TCPA AUTH* TpmOwner Aut h);

Type

TCPA protected capability; user must provide authorization as the TPM Owner.
Parameters

Type Name Description

TCPA_AUTH TpmOwner Aut h Authorization data for the Owner
Actions

The TPM verifies that the TpomOwnerAuth properly authorizes the owner.

The TPM sets the TCPA_PERSISTENT_FLAGS.disableownerclear flag in the TPM that permanently
disables the execution of the TPM_OwnerClear command.

The only mechanism that can clear the TPM is the TPM_ForceClear command. The TPM_ForceClear
command requires physical access to the TPM to execute.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_NOSRK There is no Owner and no SRK value is available.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

Version 1.0 25 January, 2001

TCPA Main Specification Page 199

8.9.7 TPM_ForceClear

Start of informative comment:

The ForceClear command performs the Clear operation under physical access. This command is
available until the execution of the DisableForceClear, at which time any further invocation of this
command returns TCPA_CLEAR_DISABLED.

End of informative comment.
IDL Definition
TCPA _RESULT TPM Forced ear();

Type
TCPA protected capability; there must be some evidence of physical access to the platform present for
the TPM to verify.

Parameters
None
Actions

The TPM checks for a prior execution of the TPM_DisableForceClear command. If executed, the TPM will
return TCPA_CLEAR_DISABLED.

After verification of physical access, the TPM performs a clear operation that has the same result as the
TPM_OwnerClear. The execution the result of this command is exactly like the TPM_OwnerClear.

The implementation of this command is a manufacturer option. The evidence of physical access could be
done by setting a pin high on a chip, or by sending special bus cycles or by any other mechanism that
provides evidence of physical access.

Return Value Description
TCPA_SUCCESS Operation completed successfully.
TCPA_NOSRK There is no Owner and no SRK value is available.

TCPA_CLEAR_DISABLED The DisableOwnerClear command has turned off the ability for the
OwnerClear command to execute.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

Version 1.0 25 January, 2001

TCPA Main Specification Page 200

8.9.8 TPM_DisableForceClear

IDL Definition
TCPA RESULT TPM Di sabl eForceC ear () ;

Type

TCPA protected capability.
Parameters

None

Actions

The TPM sets the TCPA_VOLATILE_FLAGS.disableforceclear flag in the TPM that disables the
execution of the TPM_ForceClear command.

Return Value Description
TCPA_SUCCESS Operation completed successfully.
TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

Version 1.0 25 January, 2001

TCPA Main Specification Page 201

8.10 The GetCapability Commands

The TPM MUST NOT return any information that identifies an individual TPM in the any GetCapability
command.

IDL Definitions

#defi ne TPM_CAP_ORD 0x00000001
#defi ne TPM_CAP_STAT 0x00000002
#defi ne TPM CAP_KEY 0x00000003
#defi ne TPM_CAP_VENDCR 0x80000000
#defi ne TPM CAP_STAT_MAI NT 0x00000301
#defi ne TPM CAP_CLEAR OWNER 0x00000302
#defi ne TPM CAP_CLEAR FORCE 0x00000303

Version 1.0 25 January, 2001

TCPA Main Specification

8.10.1TPM_GetCapability

IDL Definition

TCPA_RESULT TPM Get Capabi | i t y(

[in]
[in]
[in]

Ul NT32 CapAr ea,
Ul NT32 SubCap,
U NT32 MaxRespSi ze,

Page 202

[In, out] U NT32* RespSi ze,
[out, size_is(*RespSize)] BYTE* Resp);
Type
TCPA protected capability
Parameters
Type Name Description
UINT32 CapAr ea Area to for request
UINT32 SubCap Further definition of what information is being requested
UINT32 MaxRespSi ze The maximum size of the response area
UINT32 RespSi ze The size of the capability response.
BYTE* Resp The actual response
Actions

The TPM validates the capArea and subCap indicators. If the information is available, the TPM creates

the response field and fills in the actual information.

capArea

subCap

Result

TPM_CAP_ORD

Command or di nal

Boolean value. TRUE TPM supports ordinal FALSE
no support

TPM_CAP_STAT

TPM_ALG_XXX
TPM_PRT_XXX
TPM_ENC_XXX

Boolean value. TRUE TPM supports item, FALSE
no support

TPM_CAP_STAT

TPM_CAP_STAT_NAI NT

Boolean value. TRUE maintenance flag ON, FALSE
maintenance flag OFF

TPM_CAP_STAT

TPM_CAP_CLEAR OMNER

Boolean value. TRUE owner clear flag ON, FALSE
owner clear flag OFF

TPM_CAP_STAT

TPM_CAP_CLEAR FORCE

Boolean value. TRUE force clear flag ON, FALSE
force clear flag

TPM_CAP_STAT

TPM_CAP_STAT_PCR

UINT32 value. Returns the count of PCR registers

TPM_CAP_STAT

TPM_CAP_STAT DI R

UINT32 value. Returns the count of DIR registers.

TPM_CAP_STAT

TPM_CAP_STAT_VENDOR

UINT32 value. Identifier of the TPM manufacturer.

TPM_CAP_STAT

TPM_CAP_STAT_VER

TCPA_VERSION structure.

TPM_CAP_KEY

key sl ot nunber

structure contains

TCPA_KEY_INFO. This

infAavimatianm rA~nAe A~ thn oAy

Version 1.0 25 January, 2001

TCPA Main Specification Page 203

information regarding the key.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_BAD_PARAMETER One or more parameters were bad.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

Version 1.0 25 January, 2001

TCPA Main Specification Page 204

8.10.2TSS_GetCapability
IDL Definition
TCPA_RESULT TSS_Get Capabi | i ty(
[in] U NT32 CapArea,
[in] U NT32 SubCap,
[in] U NT32 MaxRespSi ze,
[In, out] U NT32* RespSi ze,
[out, size_is(*RespSize)] BYTE* Resp);

Type
TSS function

Parameters

Type Name Description

UINT32 CapAr ea Partition of capabilities to be interrogated

UINT32 SubCap Further definition of what information is being requested
UINT32 MaxRespSi ze The maximum size of the response area

UINT32 RespSi ze The size of the capability response.

BYTE* Resp The actual response

Actions

The TPM validates the capArea and subCap indicators. If the information is available, the TPM creates
the response field and fills in the actual information.

capArea subCap Result

TSS_STAT TSS_RURDY BOOL — TRUE TPM will accept commands, FALSE
TPM is busy

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_BAD_PARAMETER One or more parameters were bad.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

Version 1.0 25 January, 2001

TCPA Main Specification Page 205

8.10.3TPM_GetCapabilitySigned
Start of informative comment:

TPM_GetCapabilitySigned takes the same input as TPM_GetCapability the only difference is that the
response area has a digital signature to validate the answer.

End of informative comment.
IDL Definition

TCPA RESULT TPM Get Capabi | i tySi gned(
[in, out] TCPA_AUTH* Si gni ngKeySl ot Aut h,
[AUTH, in] TCPA KEY_SLOT SigningKeySl ot,

[AUTH, in] U NT32 CapArea,
[AUTH, in] U NT32 SubCap,
[AUTH, in] U NT32 MaxRespSi ze,

[AUTH, in, out] U NT32* RespSi ze,

[AUTH, in, out] U NT32* SignSize,

[AUTH, out] TCPA _VERSI ON* ver,

[AUTH, out, size_is(*RespSi ze)] BYTE* Resp,
[AUTH, out, size_is(*SignSize)] BYTE* Sign);

i
i
i
[AUTH, in] U NT32 MaxSi gnSi ze,
i
i

Type

TCPA protected capability; the user must supply authorization to use of parameter SigningKeySlot.

Parameters

Type Name Description

TCPA_AUTH Si gni ngKey Sl ot Aut h Authorization to use SigningKeySlot

TCPA_KEY_SLOT | Signi ngKeySlI ot Slot containing signature key.

UINT32 CapAr ea Partition of capabilities to be interrogated

UINT32 SubCap Further definition of what information is being
requested

UINT32 MaxRespSi ze The maximum size of the response area

UINT32 MaxSi gnSi ze The maximum size of the signature area

UINT32* RespSi ze The size of the capability response.

UINT32* Si gnSi ze The size of the signature area

TCPA_VERSION ver This SHALL be the current version, see 4.5

BYTE* Resp The response area as set by the capability response

BYTE* Si gn The signature of the response

Actions

The TPM interprets the capArea and subCap fields to determine what the response should be. This is the
same processing as done in TPM_GetCapability.

Version 1.0 25 January, 2001

TCPA Main Specification Page 206

With the response field available, the TPM validates the authorization to use the key pointed to by
pubKey. After validation the TPM creates a digital signature of the response field and puts the resulting
signature block in the sign parameter.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_KEYNOTFOUND The PUBKEY of the key to be signed is not known to the TPM.

TCPA_BAD_PARAMETER One or more parameters were bad.

TCPA_BUFSIZE The output buffer is too small. *SigBlobActualSize is set to the size
required.

TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

Version 1.0 25 January, 2001

TCPA Main Specification Page 207

8.11 Audit Commands

Each command ordinal in non-volatile TPM memory has an indicator if executing the command will result
in the generation of an audit event.

The audit event includes the command ordinal and the return code from the command.

Version 1.0 25 January, 2001

TCPA Main Specification Page 208

8.11.1TPM_GetAuditEvent

The TPM uses this command to get the audit information from the TPM.
IDL Definition

TCPA_RESULT TPM Get Audi t Event (
[out] U NT32* CmdOrd,
[out] U NT32* Returncode,

[out] TCPA DI GEST* Digest);

Type
TCPA protected capability.

Parameters

Type Name Description

UINT32* CmdOrd Ordinal of the last command executed.
UINT32* Ret ur ncode The return code for the last command executed
TCPA_DIGEST* Di gest The running log of all audited events.

Actions

The TPM returns the ordinal of the last audited command. The TPM also returns the value of the running
digest.

Return Value Description
TCPA_SUCCESS Operation completed successfully.
TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

Version 1.0 25 January, 2001

TCPA Main Specification Page 209

8.11.2TSS_GetAuditLog

Get the log from the TSS.
IDL Definition

TCPA_RESULT TSS_Get Audi t Log(
[in] U NT32 MaxLogSi ze,
[in, out] Ul NT32* LogSi ze,
[out] TCPA VERSI ON* Version,
[out] U NT32* Event Count,
[out, size_is(*LogSize)] BYTE* Log);

Type
TSS function.

Parameters

Type Name Description

UINT32 MaxLogSi ze The maximum size of the output area

UINT32* LogSi ze The size of the log area

TCPA_VERSION* Ver si on The version of the audit log.

UINT32* Event Count The count of events in the log

BYTE* Log The actual log entries. Each entry in the log is a
TCPA_LOG_EVENT structure.

Actions

The TSS returns all log events in the log file.

Return Value Description
TCPA_SUCCESS Operation completed successfully.
TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

Version 1.0 25 January, 2001

TCPA Main Specification Page 210

8.11.3TPM_SetOrdinalAuditStatus
Set the audit flag for a given ordinal. This command requires the authorization of the TPM Owner.
IDL Definition

TCPA _RESULT TPM Set Or di nal Audi t St at us(
[in, out] TCPA AUTH* TpmOaner Aut h,
[AUTH, in] U NT32 Odinal,

[AUTH, in] BOOL* State);

Type

TCPA protected capability; the user must show authorization from the TPM Owner to execute the
command.

Type Name Description

TCPA_AUTH TpmOwner Aut h TPM Owner authentication

UINT32 O di nal The ordinal to set the audit event handling

BOOL State The state of the ordinal's audit flag, where TRUE =
auditing, FALSE = not auditing.

Actions

The TPM authenticates the command using the TPM Owner authentication. If authentication
unsuccessful the TPM returns TCPA_FAIL.

The TPM sets the state of the non-volatile flag for the given ordinal to the indicated state. The TPM also
returns the state in the response.

Return Value Description
TCPA_SUCCESS Operation completed successfully.
TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

Version 1.0 25 January, 2001

TCPA Main Specification Page 211

8.11.4TPM_GetOrdinalAuditStatus
Get the status of the audit flag for the given ordinal.
IDL Definition

TCPA_RESULT TPM Get Or di nal Audi t St at us(
[in] U NT32 Odinal,
[out] BOOL* State);

Type
TCPA protected capability.

Parameters

Type Name Description

UINT32 O di nal The ordinal to report the status on.

BOOL State The state of the ordinal's audit flag, where TRUE =
auditing, FALSE = not auditing.

Actions

The TPM returns the Boolean value for the given ordinal.

Return Value Description
TCPA_SUCCESS Operation completed successfully
TCPA_FAIL An internal error occurred, or POST or a previous self-test failed.

Version 1.0 25 January, 2001

TCPA Main Specification Page 212

8.12 Enabling Ownership

Version 1.0 25 January, 2001

TCPA Main Specification Page 213

8.12.1TPM_SetOwnerlnstall

IDL Definition

TCPA_RESULT TPM Set Oaner I nstal | (
[in] BOOL* State);

Type
TCPA protected capability; there must be some evidence of physical access present for the TPM to verify.

Parameters

Type Name Description

BOOL State State to set ownership flag to
Action

If the TPM has a current owner, this command immediately returns with TCPA_SUCCESS.

The TPM validates the assertion of physical access. The TPM then sets the value of
TCPA_PERSISTENT_FLAGS.ownership to the value in state.

Return Value Description
TCPA_SUCCESS Operation completed successfully
TCPA_FAIL A critical system error occurred

Version 1.0 25 January, 2001

TCPA Main Specification Page 214

8.13 Enabling a TPM

Version 1.0 25 January, 2001

TCPA Main Specification Page 215

8.13.1 TPM_OwnerSetDisable

IDL Definition

TCPA _RESULT TPM Owner Set Di sabl e(
[in, out] TCPA AUTH* TpnmOaner Aut h,
[AUTH, in, out] BOOL* State);

Type
TCPA protected capability; the user must provide authorization.

Parameters

Type Name Description

TCPA_AUTH TpmOwner Aut h Authorization from TPM Owner
BOOL State State to set disable flag to
Action

The TPM SHALL authenticate the command as coming from the TPM Owner. If unsuccessful, the TPM
SHALL return TCPA_BAD_AUTH.

The TPM SHALL set the TCPA_PERSISTENT_FLAGS.disable flag to the value in the state parameter.
The TPM SHALL return the value of the flag in the response.

Return Value Description

TCPA_SUCCESS Operation completed successfully
TCPA_BAD_PARAMETER Parameter was not recognized
TCPA_FAIL A critical system error occurred

Version 1.0 25 January, 2001

TCPA Main Specification Page 216

8.13.2TPM_PhysicalDisable

IDL Definition
TCPA RESULT TPM Physi cal Di sabl e();

Type

TCPA protected capability; there must be some evidence of physical access present for the TPM to verify.
Parameters

None

Action

The TPM SHALL set the TCPA PERSISTENT_FLAGS.disable value © TRUE. The TPM while executing
this command MUST obtain assurance from a physical method that operation of this command is
authorized.

The TPM manufacturer MAY implement this command not as a response to a message block but as a
response to a physical action, for instance, the acceptance of a special bus cycle or setting a pin high.

Return Value Description
TCPA_SUCCESS Operation completed successfully
TCPA_FAIL A critical system error occurred

Version 1.0 25 January, 2001

TCPA Main Specification Page 217

8.13.3 TPM_PhysicalEnable
Definition
TPM_Physi cal Enabl e

Type

TCPA protected capability; there must be some evidence of physical access present for the TPM to verify.
Parameters

None

Action

The TPM SHALL set the TCPA_PERSISTENT _FLAGS.disable value to FALSE. The TPM while
executing this command MUST obtain assurance from a physical method that operation of this command
is authorized.

The TPM manufacturer MUST implement this command as a response to a physical action, for instance,
the acceptance of a special bus cycle or setting a pin high.

The platform SHALL be incapable of subverting this command.

There is no IDL message block defined for this command.

Version 1.0 25 January, 2001

TCPA Main Specification Page 218

8.14 Activating a TPM

Version 1.0 25 January, 2001

TCPA Main Specification Page 219

8.14.1TPM_PhysicalSetDeactivated

IDL Definition

TCPA_RESULT TPM Physi cal Set Deact i vat ed(
[in] BOOL* State);

Type

TCPA protected capability; there must be some evidence of physical access present for the TPM to verify.
Parameters

Type Name Description

BOOL State State to set deactivated flag to
Action

The TPM while executing this command MUST obtain assurance from a physical method that operation
of this command is authorized.

The TPM SHALL set the TCPA _PERSISTENT_FLAGS.deactivated flag to the value in the state
parameter.

Return Value Description

TCPA_SUCCESS Operation completed successfully
TCPA_BAD_PARAMETER Parameter was not recognized
TCPA_FAIL A critical system error occurred

Version 1.0 25 January, 2001

TCPA Main Specification

8.14.2TPM_SetTempDeactivated

IDL Definition
TCPA_RESULT TPM Set TenpDeacti vated();

Type

TCPA protected capability.
Parameters

None.

Action

The TPM SHALL set the TCPA_VOLATILE_FLAGS.deactivated flag to the value TRUE.

Page 220

Return Value

Description

TCPA_SUCCESS

Operation completed successfully

TCPA_FAIL

A critical system error occurred

Version 1.0 25 January, 2001

TCPA Main Specification Page 221

8.15 TPM _FieldUpgrade

Start of informative comment:

The TPM needs a mechanism to allow for updating the protected capabilities once a TPM is in the field.
Given the varied nature of TPM implementations there will be numerous methods of performing an
upgrade of the protected capabilities. This command, when implemented, provides a manufacturer
specific method of performing the upgrade.

The manufacturer can determine, within the listed requirements, how to implement this command. The
command may be more than one command and actually a series of commands.

The IDL definition is to create an ordinal for the command, however the remaining parameters are
manufacturer specific.

End of informative comment.
IDL Definition

TCPA _RESULT TPM Fi el dUpgr ade(
[in, out] TCPA AUTH* owner Aut h,

Type)

TCPA protected capability; the TPM Owner must authenticate the command.

Parameters

Type Name Description

TCPA_AUTH owner Aut h Authentication from TPM owner to execute command
Remaining parameters are manufacturer specific

Actions

The TPM SHALL perform the following when executing the command:
Validate the TPM Owners authorization to execute the command

Validate that the upgrade information was sent by the TPME. The validation mechanism MUST use a
strength of function that is at least the same strength of function as a digital signature performed
using a 2048 bit RSA key.

Validate that the upgrade target is the appropriate TPM model and version.
Process the upgrade information and update the protected capabilities

Set the TCPA_PERSISTENT_FLAGS.revMajor and TCPA_PERSISTENT_FLAGS.revMinor to the
values indicated in the upgrade. The selection of the value is a manufacturer option. The values
MUST be monotonically increasing. Installing an upgrade with a major and minor revision that is less
than currently installed in the TPM is a valid operation.

Set the TCPA_VOLATILE_FLAGS.deactivated to TRUE.
Descriptions

The upgrade mechanisms in the TPM MUST not require the TPM to hold a global secret. The definition of
global secret is a secret value shared by more than one TPM.

The TPME is not allowed to pre-store or use unique identifiers in the TPM for the purpose of field
upgrade. The TPM MUST NOT use the endorsement key for identification or encryption in the upgrade
process. The upgrade process MAY use a TPM Identity to deliver upgrade information to specific TPM’s.

The upgrade process can only change protected capabilities.

Version 1.0 25 January, 2001

TCPA Main Specification Page 222

The upgrade process can only access data in shielded locations where this data is necessary to validate
the TPM Owner, validate the TPME and manipulate the blob

The TPM MUST be conformant to the TCPA specification, protection profiles and security targets after the
upgrade. The upgrade MAY NOT decrease the security values from the original security target.

The security target used to evaluate this TPM MUST include this command in the TOE.

Version 1.0 25 January, 2001

TCPA Main Specification Page 223

8.16 TPM Internal RSA Operations on Arbitrarily Sized Data

Version 1.0 25 January, 2001

TCPA Main Specification Page 224

8.16.1 TPM_Internal_Encrypt
Start of informative comment:

This encryption function is for internal TPM use, only. This function takes a private key performs OAEP
encoding and additional processing of the encoded blob before performing the actual encryption of the
blob.

If an instantiation of security functions contains a TPM, this definition does not prevent the export of an
encryption function by that instantiation. That exported encryption function could have the same
parameters and data structures as TPM_Internal_Encrypt, but must have a different name. It would not
be a TCPA protected capability and would not have access to shielded-locations.

Such an encryption function may, or may not, affect the export and import of TCPA compliant equipment
to and from sovereign states.

End of informative comment.

The definition of this command is for internal use of TPM devices. The TPM MUST NOT export this
command outside the TPM.

IDL Definition

TCPA _RESULT TPM_ I nternal _Encrypt (
[in] U NT32 maxPri vW apSi ze,
[in] TCPA_KEY_SLOT target
[in] TCPA _KEY_SLOT wrapper,
[in, out] U NT32* WapSize,
[out, size_ is(*WapSize)] BYTE* Wap);

Type

Internal TCPA protected capability; TPM must not export this command.

Parameters

Type Name Description

UINT32 maxPri vW apSi ze The maximum size of the output wrapped blob
TCPA_KEY_SLOT | target This SHALL point to the private key to wrap
TCPA_KEY_SLOT | wr apper This SHALL be the key that will perform the wrap
UINT32* W apSi ze The size of the wrapped blob

BYTE* W ap The wrapped blob

Action

The TPM SHALL use the RSAES_OAEP protocol from PKCS#1 version 2.0.

The TPM SHALL create a TCPA_STORE_ASYMKEY structure using the information for the key pointed
to by target.

After encoding the TCPA_STORE_ASYMKEY structure the TPM SHALL fill in the
TCPA_INTERNAL_HDR structure.

The TPM then creates the blob to be encrypted by appending the TCPA INTERNAL HDR structure with
the TCPA_STORE_ASYMKEY structure.

The TPM then encrypts the appended blob using the key pointed to by wrapper.

The TPM returns the wrapped key in the wrap parameter.

Version 1.0 25 January, 2001

TCPA Main Specification Page 225

Chunk Calculation

For various encryption algorithms, the size of the key may be longer than a single encryption operation
can handle. The following routine provides a standard method of breaking the area into suitable size
areas and allowing for the later decryption and re-assembly of the key.

The specification calls for OAEP so this chunk calculation works for the OAEP encryption and encoding
method.

Set hLen to 20 bytes (the size of a SHAL hash)

Set int to the size of the header area TCPA_INTERNAL_HDR structure (1 byte)
Set k to the modulus size of the RSA key

For example for a 2048 bit key, k equals 256 bytes

Formula is msize = k —int — 2*hLen

msize = k-1 —2*hLen =256 —1 —40 = 215

Create chunks to encrypt by taking msize chunks from the structure and performing the normal OAEP
encoding.

The last chunk does not need © be padded as the process that will recreate the chunks knows the
size due to the dataSize parameter.

The output area is the wrapped chunks in order of their encryption. It is the responsibility of the receiver of
the wrapped area to ensure that the chunks remain in the correct order.

Return Value Description

TCPA_SUCCESS Operation completed successfully
TCPA_BAD_PARAMETER Parameter was not recognized
TCPA_FAIL A critical system error occurred

Version 1.0 25 January, 2001

TCPA Main Specification Page 226

8.16.2TPM_Internal_Signature

Start of informative comment:
This signature function is for internal TPM use, only.

If an instantiation of security functions contains a TPM, this definition does not prevent the export of a
signature function by that instantiation. That exported signature function could have the same parameters
and data structures as TPM_Internal_Signature, but must have a different name. It would not be a TCPA
protected capability and would not have access to shielded-locations.

End of informative comment.

The definition of this command is for internal e of TPM devices. The TPM MUST NOT export this
command outside the TPM.

IDL Definition

TCPA RESULT TPM I nternal _Signature (
[in] U NT32 nmaxSigSize,
[in] U NT32 bl obSi ze,
[in] TCPA PRI VKEY si gKey,
[in, size_is(blobSize)] BYTE* bl ob,
[in, out] U NT32* sigSize,
[out, size_ is(*sigSize)] BYTE* sigQ);

Type

Internal TCPA protected capability; TPM MUST NOT export this command.

Parameters

Type Name Description

UINT32 maxSi gSi ze The maximum size of the outputted wrapped private key
UINT32 bl obSi ze This SHALL be the size of blob parameter
TCPA_PRIVKEY si gKey This SHALL be key that will perform the signature
BYTE* bl ob This SHALL be the data that is to be signed

UINT32* si gSi ze This SHALL be the size of the sig parameter on output
BYTE* sig This SHALL be the signature of the blob parameter
Action

The blob MUST be hashed using the SHA-1 algorithm and the resulting TCPA_DIGEST area is the value
to be signed.

The TPM SHALL sign the TCPA_DIGEST of the blob parameter with the key in sigKey using the
RSASSA-PKCS1-vl 5 protocol from PKCS#1 version 2.0.

Return Value Description

TCPA_SUCCESS Operation completed successfully
TCPA_BAD_PARAMETER Parameter was not recognized
TCPA_FAIL A critical system error occurred

Version 1.0 25 January, 2001

TCPA Main Specification Page 227

8.17 TPM_SetRedirection

Informative comment

‘Redirected” keys enable the output of a TPM to be directed to non-TCPA security functions in the
platform, without exposing that output to non-security functions.

It is sometimes desirable to direct the TPM'’s output directly to specific platform functions without exposing
that output to other platform functions. To enable this, the key in a leaf node of TCPA Protected Storage
can be tagged as a “redirect” key. Any plaintext output data secured by a redirected key is passed by the
TPM directly to specific platform functions and is not interpreted by the TPM.

Since redirection can only affect leaf keys, redirection applies to: TPM_Unbind, TPM_Unseal,
TPM_Quote, TPM_Sign, TPM_CertifyKey

End of informative comments
IDL Definition

TCPA _RESULT TPM Set Redi rection (
[in, out] TCPA AUTH* keySl ot Aut h,
[AUTH, in] TCPA KEY_SLOT keySl ot,
[AUTH, in] UINT32 c1,
[AUTH, in] UINT32 c2);

Type

TCPA protected capability; the TPM MAY implement this command. The user MUST supply authorization
to use the key pointed to by keySlot.

Parameters

Type Name Description

TCPA_AUTH* keySl ot Aut h | This SHALL be the authorization to use the key pointed to by
keySlot

TCPA _KEY_SLOT | keySl ot This SHALL be slot identifier of a properly loaded key

UINT32 cl This SHALL be a manufacturer option to specify the output
redirection

UINT32 c2 This SHALL be a manufacturer option to provide options for the
cl parameter

Action

The TPM SHALL validate the authorization to use the key pointed to by keySlot.

The TPM SHALL verify that the key pointed to by keySlot has the redirection flag set to TRUE. If FALSE
the TPM SHALL return TCPA_FAIL.

The TPM SHALL set the key slot redirection parameters according to the values in parameters c1 and c2.

A key that is tagged as a ‘“redirect” key MUST be a leaf key in the TCPA Protected Storage blob
hierarchy. A key that is tagged as a “redirect” key CAN NEVER be a parent key.

Ouput data that is the result of a cryptographic operation using the private portion of a “redirect” key:
1. MUST be passed to an alternate output channel
2. MUST NOT be passed to the normal output channel
3. MUST NOT be interpreted by the TPM.

Version 1.0 25 January, 2001

TCPA Main Specification Page 228

The authorization response returns to the caller.

Return Value Description

TCPA_SUCCESS Operation completed successfully
TCPA_BAD_PARAMETER Parameter was not recognized
TCPA_FAIL A critical system error occurred

Version 1.0 25 January, 2001

TCPA Main Specification Page 229

9. Subsystem Credentials

9.1 Introduction

All credentials MUST use the TCPA_VERSION structure.

9.2 Endorsement

The PRIVEK and PUBEK MUST be accessed only by protected capabilities whose definition explicitly
requires access to those keys.

Version 1.0 25 January, 2001

TCPA Main Specification

Page 230

9.2.1 TPM_CreateEndorsementKeyPair

IDL Definition

TCPA_RESULT TPM Cr eat eEndor senment KeyPai r (
[in] TCPA_NONCE Nonce,
[in, size_is(keySize)] TCPA _KEY* keyl nfo,

[out] TCPA DI GEST* Checksum
[out] TCPA_PUBKEY*

[out] TCPA _VERSI ON* Ver);

PubEndor senent Key,

Type

TCPA protected capability

Parameters

Type Name Description

UINT32 Nonce This is arbitrary data chosen by the entity that submits
the command

TCPA_KEY* keyl nf o The input structure contains all parameters except
pubkey and privkey (which are NULL), to specify the
size and type of the new key.

TCPA_DIGEST Checksum This SHALL be the result of a hash process applied to
the concatenation of the PUBEK and the nonce.

TCPA_PUBKEY PubEndor senment Key | This SHALL be the PUBEK

TCPA_VERSION Ver This SHALL be the version specified in section 4.5.

Description

For reasons of interoperability, algorithm SHOULD indicate RSA and algParms SHOULD indicate 2048bit
endorsement keys. (Refer to Conformance section 10.4 for further details.)

Type

Name Description

TCPA_PRIVKEY

PRIVEK

This SHALL be the private key of the endorsement key pair.

TCPA_PUBKEY

PUBEK

This SHALL be the public key of the endorsement key pair.

The PRIVEK SHALL exist only in a TCPA-shielded location.

If the data structure TPM_ENDORSEMENT_CREDENTIAL is stored on a platform after an Owner has
taken ownership of that platform, it SHALL exist only in storage to which access is controlled and is

available to authorized entities.

Actions

The first valid TPM_CreateEndorsementKeyPair command received by a TPM SHALL

1. Create a key pair called the “endorsement key pair” using a TCPA-protected capability. The type and

size of key are that indicated by algorithm and the algParms.

2. Create “checksum” by appending the nonce to the PUBEK and passing the concatenated data

through a hash process.
Store the PRIVEK.

Export the data structures PUBEK, checksum and TCPA_version.

Version 1.0 25 January, 2001

TCPA Main Specification Page 231

Subsequent calls to TPM_CreateEndorsementKeyPair SHALL return code TCPA_FAIL.

Return Value Description

TCPA_SUCCESS Operation completed successfully.
TCPA_BAD_PARAMETER Parameter not recognized.
TCPA_FAIL A critical system error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 232

9.2.2 TPM_ReadPubek

IDL Definition

TCPA_RESULT TPM ReadPubek(
[in] TCPA_NONCE Nonce,
[out] TCPA DI GEST* Checksum
[out] TCPA PUBKEY* PubEndorsement Key,
[out] TCPA VERSI ON* Ver);

Type

TCPA protected capability

Parameters

Type Name Description

UINT32 Nonce This is arbitrary data chosen by the entity that submits
the command

TCPA_DIGEST Checksum This SHALL be the result of a hash process applied to

the concatenation of the PUBEK and the nonce.

TCPA_PUBKEY PubEndor senent Key This SHALL be the PUBEK

TCPA_VERSION Ver This SHALL be the version specified in section 4.5.

Description

This command returns the PUBEK.

Actions

The TPM_ReadPubek command SHALL

1. |If readPubek is FALSE return TCPA_DISABLED_CMD.

2. Create “checksum” by appending the nonce to the PUBEK and passing the concatenated data
through a hash process.

3. Export the PUBEK, checksum and TCPA_version.

Return Value Description

TCPA_SUCCESS Operation completed successfully.

TCPA_BAD_PARAMETER Parameter not recognized. Output areas have a NULL pointer.

TCPA_FAIL A critical system error occurred.

TCPA_DISABLED_CMD A previous TPM_DisablePubekRead command has been successfully

processed setting TCPA_PERSISTENT_FLAGS.readPubek to FALSE.

Version 1.0 25 January, 2001

TCPA Main Specification Page 233

9.2.3 TPM_DisablePubekRead

Start of informative comment:

The TPM Owner may wish to prevent any entity from reading the PUBEK. This command sets the non-
volatile flag so that the read command always returns TCPA_DISABLED_CMD.

End of informative comment.
IDL Definition

TPM Di sabl ePubekRead(
[in, out] TCPA AUTH* owner Aut h,
)

Type

TCPA protected capability; the user must present authorization from the TPM Owner.

Parameters

Type Name Description

TCPA_AUTH* owner Aut h This SHALL be the authorization from the TPM Owner to
execute this command

Actions

This capability sets the TCPA_PERSISTENTFLAGS.readPubek flag to FALSE.

Return Value Description
TCPA_SUCCESS Operation completed successfully.
TCPA_FAIL A critical system error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 234

9.2.4 TPM_OwnerReadPubek

IDL Definition

TCPA_RESULT TPM Oaner ReadPubek(
[in, out] TCPA_AUTH* owner Aut h,
[AUTH, out] TCPA PUBKEY* PubEndorsement Key,
[AUTH, out] TCPA_VERSI ON* Ver);

Type

TCPA protected capability; caller must supply authorization from the TPM Owner

Parameters

Type Name Description

TCPA_AUTH* owner Aut h This SHALL be the authorization from the TPM Owner

to execute this command

TCPA_PUBKEY PubEndor senent Key This SHALL be the PUBEK

TCPA_VERSION Ver This SHALL be the version specified in section 4.5.

Description

This command returns the PUBEK.

Actions

The TPM_ReadPubek command SHALL

1. Validate the TPM Owner authorization to execute this command
2. Export the PUBEK and TCPA _version.

Return Value Description

TCPA_SUCCESS Operation completed successfully.
TCPA_BAD_PARAMETER Parameter not recognized.
TCPA_FAIL A critical system error occurred.
TCPA_AUTHFAIL The Owner authorization did not pass

Version 1.0 25 January, 2001

TCPA Main Specification Page 235

9.3 Generating a Trusted Platform Module Identity

Version 1.0 25 January, 2001

TCPA Main Specification Page 236

Obtaininga TPM identity
. — make TPM identity(P_cA _identity,

1 (id-label, identity_authorisation,alg_id, aIgJ)aram)
; » ' identity binding

. collate_identity request(....)
2 : E(P_CA _identity, sessonkey 1)
' . E(session_key_1, TPM-identitykey,

id-label, alg-id, alg-param, identity_binding,
endor sementcred, platform-cred,

conformance-cred)
3 < © contact_privacy CA
L« . activate TPM_identity (
4 (E(endorsement_key,digest(id-key), session_key_2))
> session_key 2
: < recover_TPM _identity(session_key_2,
5 ; (© E(session_key 2, TPM _identity_credentials))
. » TPM_identity_credentials
Eg"acy TPM SS Owner

The TPM creates an identity-binding signature (the value of a signature over the
TCPA_IDENTITY_CONTENTS structure). Among other things, this proves possession of the new private
key, which does the signing of the TCPA_IDENTITY_CONTENTS structure. The Subsystem sends the
sighature along with evidence of a genuine TPM and the platform the TPM resides on to a Privacy CA.
The encryption of the request is to provide privacy not security.

The Privacy CA inspects the evidence and concurs that the TPM is genuine and in a valid platform. The
Privacy CA validates the signature of the TCPA IDENTITY_CONTENTS structure and verifies that it was
signed using the private key corresponding to the public key in the identity request. The
TCPA_IDENTITY_CONTENTS structure includes the Privacy CA’s public key. The Privacy CA obtains
assurance that it (and not some other Privacy CA) is the target of the request to provide the identity
attestation.

The Privacy CA cannot check that the public key inside identity-binding signature belongs to a genuine
TPM, but it knows that the TPM described in the evidence is a genuine TPM. The Privacy CA generates
the attestation credential and encrypts the credential for decryption by the requesting TPM. The Privacy
CA also sends the genuine TPM a “statement” that the credential attests to a particular public key (the
one in the identity-credential).

The TPM receives the encrypted data. It cannot parse the credential, but it can check that the credential
attests to one of its public keys, by checking the “statement” from the Privacy CA. Only if the credential
relates to one of the TPM'’s public keys does the TPM enable recovery of the credential.

The presumption is that the Privacy CA is trustworthy. This must be the case for the acceptance of the
attestation by a third party. Hence, if the attestation is worth having, the “statement” from the Privacy CA
to the TPM can be trusted. Hence, the TPM “knows” that the encrypted credential relates to the public key
in the “statement.” The Privacy CA has ensured that only a genuine TPM can recover the encrypted
credential and statement and that a genuine TPM will enable recovery of the credential only if the
credential is associated with a public key belonging to the TPM.

A rogue can certainly pose as a Privacy CA and cause the TPM to release the credential created by that
rogue. But who will trust the attestation provided by that rogue? A trustworthy credential can be recovered
only if it attests to a public key of a genuine TPM, because the Privacy CA that created the credential can

Version 1.0 25 January, 2001

TCPA Main Specification Page 237

Version 1.0 25 January, 2001

TCPA Main Specification

9.3.1 TPM_Makeldentity

IDL Definition

TCPA_RESULT TPM Makel dentity(
[in, out] TCPA AUTH* TpnOwner Aut h,
[in, out] TCPA_AUTH* SrkAuth,
[AUTH, in] TCPA_PUBKEY PrivacyCA,

[AUTH, in] U NT32 Label Size,

[AUTH, in] U NT32 MaxW apSi ze,
[AUTH, in] U NT32 MaxCAsi ze,

[AUTH, in] U NT32 ldentityAuthSize,

i
[
i
[
[AUTH, in, size_is(Label Size)] BYTE* Label,
[
i
i
i

[AUTH, in] TCPA_KEY keyl nfo,

[AUTH, in, size_is(ldentityAuthSize)] BYTE*
[AUTH, in, out] Ul NT32* W apSi ze,

[AUTH, in, out] U NT32* CaSi ze,

[AUTH, out] TCPA PUBKEY* |dentityPub,

I dent it yAut h,

Page 238

[AUTH, out, size_is(*WapSize)] BYTE* Wap,
[AUTH, out, size_is(*CaSize)] BYTE* identityBinding);)

Type

TCPA protected capability; user must provide authorizations from the TPM Owner and the SRK.

Parameters

Type Name Description

TCPA_AUTH TpmOwner Aut h This SHALL be authorization from the TPM Owner. The
authorization session MUST be OSAP.

TCPA_AUTH Sr kAut h This SHALL be authorization for use of the SRK

TCPA_PUBKEY PrivacyCA This SHALL be the Public key of the Privacy CA that will
vouch for this TPM identity.

UINT32 Label Si ze The size of the label field

UINT32 MaxW apSi ze The maximum size of the wrap area

UINT32 MaxCASi ze The maximum size of the CA area

UINT32 I denti t yAut hSi ze | The size of the area for the new identities authorization

BYTE* Label The label for the new identity

TCPA_KEY keyl nfo The input structure contains all parameters except pubkey
and privkey (which are NULL), to specify the size and type
of the new key.

BYTE* I dentityAuth This SHALL be an encrypted version of the authorization
data (identity_authorization) that is to be presented when
accessing the private key of this new TPM identity.

UINT32* W apSi ze The size of the outputted wrapped identity.

UINT32* CaSi ze The size of the area to be sent to the CA

TCPA_PUBKEY* | dentityPub This SHALL be the public key of this TPM identity.

BYTE* W ap This SHALL be a protected-storage structure, used to store
the private key of this TPM identity.

Version 1.0 25 January, 2001

TCPA Main Specification Page 239

BYTE* i dentityBinding This SHALL be the signature value of the signature over the
structure TCPA_IDENTITY_CONTENTS, using the
tpm_signature_key in the algorithm indicated by
asym_alg_id and asym_alg_parameters.

Description

The command TPM_Makeldentity is used to generate an identity in a TPM and to request attestation to
that identity.

The public key of the new TPM identity SHALL be identityPubKey. The private key of the new TPM
identity SHALL be tpm_signature_key.

For reasons of interoperability, algorithm SHOULD indicate RSA and algParms SHOULD indicate a
2048bit TPM identity key. (Refer to Conformance section 10.4.1 for further details.)

Properties of the new identity

Type Name Description

TCPA_PUBKEY | dent it yPubKey This SHALL be the public key of a previously unused
asymmetric key pair.

TCPA_PRIVKEY Tpm_si gnat ur e_key This SHALL be the private key that forms a pair with
identityPubKey and SHALL be extant only in a TCPA-
shielded location.

This capability also generates a blob containing the tpm_signature_key, which has the same format as a
blob created by a CreateWrapKey command. The structure of that blob is defined in TCPA_PRIVKEY.

If identityPubKey is stored on a platform after an Owner has taken ownership of that platform, it SHALL
exist only in storage to which access is controlled and is available to authorized entities.

If the Subsystem supports the creation of an audit log, the receipt-event and response-event associated
with a TPM_Makeldentity command SHALL form part of that log.

Actions
A Trusted Platform Module that receives a valid TPM_Makeldentity command SHALL do the following:

1. Use TpmOwnerAuth to verify that the Owner authorized all TPM_Makeldentity parameters tagged
with “AUTH IN”, and abandon this TPM_Makeldentity process if there is no match. The TPM MUST
use a protected capability to verify the authorization data.

2. Use SRK_auth to verify that the SRK owner authorised all TPM_Makeldentity parameters tagged with
“AUTH IN”, and abandon this TPM_Makeldentity process if there is no match. The TPM MUST use a
protected capability to verify the authorization data.

3. Obtain the identity_authorization to be associated with the new TPM identity, by decrypting the field
IdentityAuth using the shared secret created with the TPM_OSAP session. The establishment of the
TPM_OSAP session MUST use the authentication of the TPM Owner. The decryption uses an XOR
of the identityAuth field and the shared secret of the TPM_OSAP session.

4. Create an asymmetric key pair (identityPubKey and tpm_signature_key) using a TCPA-protected
capability, in accordance with the algorithm and algParms contained in the TPM_Makeldentity
command

5. Associate the tpm_signature_key with the identity_authorization, such that tpm_signature_key can
only be used upon presentation of identity _authorization.

Version 1.0 25 January, 2001

TCPA Main Specification Page 240

6. Export a data structure with the same format as that aeated by the command "CreateWrapKey,”
using identity_authorization as authorization data, using the Storage Root Key as the parent key, and
marking tpm_signature_key as belonging to a TPM identity.

7. Export the data structure identityPubKey using an authorization method that identifies identityPubKey
as a response to this instance of a TPM_Makeldentity command. The authorization method SHALL
be a TCPA-protected capability whose purpose is to provide such authorization data.

8. Export the data structure identity_binding.

Return Value Description

TCPA_SUCCESS Operation completed successfully.
TCPA _BAD_PARAMETER Parameter was not recognized.
TCPA_FAIL A critical system error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 241

9.3.2 TSS_CollateldentityRequest

IDL Definition

TCPA_RESULT TSS_Col | at el denti t yRequest (

[in] TCPA_VERSION Ver,

[in] U NT32 Algorithm

[in] U NT32 Label Size,

[in] U NT32 ParnSize,

[in] U NT32 EndorseSize,

[in] U NT32 Pl atfornSize,

[in] U NT32 ConfornSize,

[in] U NT32 MaxReqSi ze,

[in] U NT32 IdentityBindingSize,

[in] TCPA_PUBKEY CaPubKey,

[in] TCPA_PUBKEY |dentityKey,

[in, out] U NT32* ReqgSize,
[in, size_is(Label Size)] BYTE* Label Area,
[in, size_is(Parntize)] BYTE* Al gParns,
[in, size_is(EndorseSize)] BYTE* EndorseCredential,
[in, size_is(PlatforntSize)] BYTE* Pl atfornCredential,
[in, size_is(ConfornSize)] BYTE* ConfornmCredential,
[in, size_is(ldentityBindingSize)] BYTE* |dentityBinding,
[out, size_is(*ReqSize)] BYTE* ldentityReq);}

Type

TSS capability and MAY be TPM capability.

Parameters

Type Name Description

TCPA_VERSION Ver Itgs SHALL be the version specified in section
UINT32 Al gorithm This SHALL be the type of symmetric encryption

Version 1.0 25 January, 2001

TCPA Main Specification

Page 242

algorithm to be used for a session key

UINT32 Label Si ze This SHALL be the size of the identity label

UINT32 ParntSi ze This SHALL be the size of the symmetric
parameters

UINT32 Endor seSi ze This SHALL be the size of the endorsement
credential

UINT32 Pl at f or nSi ze This SHALL be the size of the platform
credential

UINT32 Conf or nfSi ze This SHALL be the size of the conformance
credential

UINT32 MaxReqSi ze This SHALL be the maximum size of the output
request area.

UINT32 I denti t yBi ndi ngSi ze This SHALL be the identity structure from the

TPM_Makeldentity function.

TCPA_PUBKEY

CaPubKey

This SHALL be the identity (public) key of the
entity (Privacy CA) chosen by the Owner to
attest to the identity of the Subsystem.

TCPA_PUBKEY

I dentit yKey

This SHALL be the public key of the TPM
identity for which attestation is requested.

UINT32*

ReqSi ze

This SHALL be the size of the identityReq field

BYTE*

Label Area

This SHALL be the identity label

BYTE*

Al gPar ns

This SHALL be a structure particular to type of
symmetric encryption algorithm to be used for a
session key

BYTE*

Endor seCr edent i al

This SHALL be a TCPA-defined data structure
which contains the data of
TPM_ENDORSEMENT_CREDENTIAL and
attests that a specific TPM conforms to the
TCPA specification.

BYTE*

Pl at f or nCr edent i al

This SHALL be a TCPA-defined data structure
which contains the data of platform_credential
and attests that a specific platform conforms to
the TCPA specification.

BYTE*

Conf or manceCr edent i al

This SHALL be a TCPA-defined data structure
which contains the data of conformance-
credential and attests that the design of a
specific platform conforms to the TCPA
specification.

BYTE*

I dentit yBi ndi ng

This SHALL be the data structure exported by
the command TPM_Makeldentity.

BYTE*

| dentityRequest

This SHALL be the data structure defined in this
section.

Description

Version 1.0 25 January, 2001

TCPA Main Specification Page 243

The command TSS_CollateldentityRequest assembles all data necessary to request attestation of a
Trusted Platform Module identity.

A Trusted Platform Subsystem that receives a valid TSS_CollateldentityRequest command SHALL export
the data structure “TCPA_IDENTITY_REQ.”

The TSS in executing this function performs two encryptions. The first is to symmetrically encrypt the
information and the second is to encrypt the symmetric encryption key with an asymmetric algorithm. The
symmetric key is a random nonce and the asymmetric key is the public key of the CA that will provide the
identity credential.

Actions
The command SHALL perform the following actions:

1. Validate that the TSS can support the symmetric algorithm and the asymmetric algorithm necessary
to perform the encryptions. If the TSS does not support these algorithms it MUST return
TCPA_BAD_PARAMETER.

2. Initialize the identityRequest area to be the TCPA_IDENTITY_REQ structure.
Create a session key by calling TSS_GetRandom.

4, Create an IV for the symmetric encryption. The IV is stored in the algParms field of the
TCPA_IDENTITY_REQ structure.

5. Create the TCPA SYM_IDENTITY_REQ structure. The command SHALL fill in each field of the
structure according to the field requirements.

6. Encrypt the TCPA _SYM_IDENTITY_REQ structure using the session key and the symmetric
algorithm from the algorithm parameter.

7. Place the encrypted TCPA_SYM_IDENTITY_REQ blob into the TCPA_IDENTITY_REQ.symBlob
field.

8. Create a TCPA_ASYM_IDENTITY_REQ structure and set TCPA_ASYM_IDENTITY_REQ
sessionkey to the session key created in step 3.

9. Encrypt the TCPA_ASYM_IDENTITY_REQ structure using the algorithm specified by the type of key
in caPubKey. The key for the encryption is caPubKey.

10. Place the encrypted TCPA_ASYM_IDENTITY_REQ blob into the TCPA_IDENTITY_REQ.asymBlob
field.

11. Return the TCPA_IDENTITY_REQ structure.

Return Value Description

TCPA_SUCCESS Operation completed successfully.
TCPA_BAD PARAMETER Parameter not recognized.
TCPA_FAIL A critical system error occurred.

Version 1.0 25 January, 2001

TCPA Main Specification Page 244

9.3.3 Contacting a Privacy CA

Version 1.0 25 January, 2001

TCPA Main Specification Page 245

9.3.4 TPM_ActivateTPMIdentity

Start of informative comment:

The purpose of TPM_Activateldentity is to twofold. The first purpose is to obtain assurance that the
credential in the TCPA_SYM_CA_ATTESTATION is for this TPM. The second purpose is to obtain the
session key used to encrypt the TPM_IDENTITY_CREDENTIAL.

TPM_Activateldentity checks that the symmetric session key corresponds to a TPM-identity before
releasing that session key.

Only the Owner of the TPM has the privilege of activating a TPM identity. The Owner is required to
authorize the TPM_Activateldentity command. The owner may authorize the command using either the
TPM_OIAP or TPM_OSAP authorization protocols.

End of informative comment.
IDL Definition
TCPA RESULT TPM Activat eTPM dentity(

[in, out] TCPA AUTH* TpnOaner Aut h,
[in, out] TCPA AUTH* identityAuth,
[AUTH, in] TCPA _KEY_SLOT ldentity,
[AUTH, in] U NT32 Bl obSize,
[AUTH, in, size_is(BlobSize)] BYTE* Bl ob,
[AUTH, out] TCPA NONCE* SymmetricKey);)
Type
TCPA protected capability; user must provide authorization from the TPM Owner to execute command.
Parameters
Type Name Description
TCPA_AUTH TpmOwner Aut h | This SHALL be the authorization from the TPM Owner to
execute this command
TCPA_AUTH i dentityAuth This SHALL be the authorization to use the identity key (this is
to allow for the authorized execution of the internal validation)
TCPA_KEY_SL I dentity This SHALL be the public key of the TPM identity that is
oT intended to be activated.
UINT32 Bl obSi ze This SHALL be the size of the blob field
BYTE* Bl ob This SHALL be the encrypted TCPA_ASYM_CA_CONTENTS
structure from a privacy CA
TCPA_NONCE Symmet ri cKey | This SHALL be the plaintext value of the session key recovered
from TCPA_ASYM_CA_CONTENTS structure
Description

The command

TPM_Activateldentity activates a TPM

identity created using

the command

TPM_Makeldentity.

The command assumes the availability of the private key associated with the identity. The command will
verify the association between the keys during the process.

The command will decrypt the TCPA_ASYM_CA_CONTENTS structure, extract the session key and
verify the connection between the public and private keys.

Actions

Version 1.0 25 January, 2001

2. Using the identityAuth field, validate the authorization to execute commands using the identity.
3. Decrypt the TCPA_CA_ASYM_CONTENTS structure. The decryption key is the TPM PRIVEK.

4. Compute a digest of the public key in the identity parameter. Compare the computed digest to the
value in the decrypted TCPA _CA_ASYM_CONTENTS structure. Return with the error code
TCPA_BAD_PARAMETER on a mismatch.

5. Validate that the identity private key belongs to this TPM.

Validate that the identity public key is the public key of a valid TPM identity. The validation process
does the following:

Generate a nonce from the TPM RNG.

Encrypt the nonce using the public key pointed to by identity.

Decrypt the nonce using the private key assumed to be associated with the identity.
Verify that the decryption matches the generated nonce.

7. Return the session key from the TCPA_CA_ASYM_CONTENTS structure.

Return Value Description

TCPA_SUCCESS Operation completed successfully.
TCPA_BAD_PARAMETER Parameter was not recognized.
TCPA_FAIL A critical system error occurred.

9.3.5 TSS_RecoverTPMIdentity

Start of informative comment:

The purpose of TSS Recoverldentity is to recover a plaintext copy of the data structure
TPM_IDENTITY_CREDENTIAL that attests that a particular identity belongs to a genuine TCPA Trusted
Platform.

The TSS_Recoverldentity command is separate from the TPM_Activateldentity command because their
processing might be done on different engines. The reason is that TSS_Recoverldentity does not have to
be trustworthy but TPM_Activateldentity must be trustworthy. Therefore, an implementation of
TSS_Recoverldentity does not require the same protection as an implementation of
TPM_Activateldentity.

Exactly one entity may attest to a TPM identity.

Access to the TPM_IDENTITY_CREDENTIAL must be restricted to entities that have a “need to know.”
This is for reasons of privacy.

End of informative comment.

The command TSS_Recoverldentity obtains a plaintext copy of the TPM_IDENTITY_CREDENTIAL
created by a Privacy CA.

If the data structure TPM_IDENTITY_CREDENTIAL is stored on a platform after an Owner has taken
ownership of that platform, it SHALL exist only in storage to which access is controlled and is only
available to authorized entities.

IDL Definition
TCPA _RESULT TSS _Recover TPM dentity(

TCPA Main Specification

Page 247

[in] TCPA_NONCE Sessi onKey,

[in] U NT32 symAttSi ze,

[in] U NT32 MaxCredential Si ze,

[in, size_is(symAttSize)] BYTE* symAtt,

[in, out] U NT32* Credential Size,

[out, size_ is(*Credential Size)] BYTE* Credential);

Type

This is a TSS capability

Parameters

Type Name Description

TCPA_NONCE Sessi onKey This SHALL be the symmetric key decrypted by the
TPM_Activateldentity

UINT32 SYymAtt Si ze This SHALL be the size of the symAtt parameter

UINT32 MaxCr edenti al Si ze This SHALL be the maximum size of the credential to be
output

BYTE* SYmAt t This SHALL be the TCPA_CA_SYM_ATTESTATION
structure

UINT32* Credenti al Si ze This SHALL be the size of the credential

BYTE* Credenti al This SHALL be the decrypted
TCPA_IDENTITY_CREDENTIAL

Actions

A Trusted Platform Subsystem that receives a valid TSS_Recoverldentity command SHALL do the

following:

1. Using the session key and the symmetric algorithm indicated by algorithm and the algorithm
parameters, decrypt credential parameter inside TCPA_CA_SYM_ATTESTATION to recover the
TPM_IDENTITY_CREDENTIAL.

2. The TSS SHOULD verify the self-consistency of TPM_IDENTITY_CREDENTIAL and abandon this
TSS_Recoverldentity process if there is an inconsistency.

3. Export TPM_IDENTITY_CREDENTIAL.

Return Value

Description

TCPA_SUCCESS

Operation completed successfully.

TCPA_BAD_PARAMETER

Parameter not recognized.

TCPA_FAIL

A critical system error occurred.

Version 1.0 25 January, 2001

e a length of 128 bits for one symmetric cipher, 168 for another, and 256 for yet

9.4.1 From Owner to Privacy CA

The protocol from the Owner to the Privacy CA SHALL consist of the following IdentityRequest message:

I dentityRequest ::= SEQUENCE ({
version Ver si on,
encSessi onKey EncSessi onKey,
encRequest EncRequest

TCPA Main Specification Page 249

Version ::= | NTEGER
-- the version nunber, for conpatibility with future revisions of this
specification. It shall be O for this version of the specification.

EncSessi onKey ::= BIT STRI NG
-- the ciphertext resulting from the encryption (under the public identity
key of the Privacy CA) of a randomy generated symmetric key (which itself is
DER- encoded as a BIT STRING).

EncRequest ::= BIT STRING
-- the ciphertext resulting from the encryption (under the session key
above) of the foll owi ng DER-encoded data structure:

"Request ::= SEQUENCE {

t pm dKey Subj ect Publ i cKeyl nf o, -- new public key
t pm dLabel OCTET STRI NG, -- identity |abel

t cpaVer si on TCPASpecVersion, -- “major.mnor”

i dentityBindi ng BI T STRI NG, -- (see bel ow)

endor senent Cr ed Certificate, -- X.509v3 PK cert

pl at f or nCr ed Certificate, -- X.509 attr. cert
conf or manceCr ed Certificate -- X.509 attr. cert

pr

-- Subj ect Publ i cKeyl nfo

(a SEQUENCE of an Algorithmdentifier and a BIT STRING is specified in
X.509. The BIT STRING contains the subject’s public key (for exanple, if the
algorithm specified is rsaEncryption, the BIT STRING contains the BER
encodi ng of a value of PKCS #1 type “RSAPublicKey”).

-- “identityBinding” is the signature value(using the newly generated TPM
private key that corresponds with the tpnl dKey) over the data specified in
Section. How that data is formatted or delimted is beyond the scope of the
protocol specified here; however, the formatting chosen nust be known to
both the TPM and the Privacy CA.

9.4.2 From Privacy CA to Owner

The protocol from the Privacy CA to the Owner consists of the PCAResponse message:

PCAResponse ::= SEQUENCE ({
version Ver si on,
synmmAl g Al gorithm dentifier,
encActi vati onKey EncActi vati onKey,
enct pnml dCr ed Enct pm dCr ed

}

EncActivationKey ::= BIT STRI NG

-- the ciphertext resulting fromthe encryption (under the PUBEK of the TPM
of the follow ng DER-encoded data structure:

-- ActivationKey ::= SEQUENCE {

-- i dKeyDi gest BIT STRING -- hash of tpm dKey

- - symmet ri cKey BI T STRI NG

-- NOTE: the validity of the entire protocol for obtaining a TPM identity
depends critically upon the assunption that a genuine TPM will only ever

Version 1.0 25 January, 2001

TCPA Main Specification Page 250

decrypt data using its PRIVEK as part of the TPM Activateldentity() call. An
Owner will never be able to ask a TPM for the decryption of arbitrary data
that has Dbeen encrypted with its PUBEK. Furthernore, the difficulty of
successfully inpersonating a TPM is ultimately bound to the conputational

conplexity of finding a collision for idKeyDigest. It is therefore STRONGLY
RECOMWWENDED that the digest be conputed using the full output of a
cryptographic hash algorithm of sufficient strength (e.g., the full 160 bits
of SHA-1).

Enctpm dCred ::= BIT STRI NG
-- the ciphertext resulting from the encryption (under the symretric
activation key above) of the tpmdentityCred (which is itself DER-encoded
as an X.509 PK Certificate).

Version 1.0 25 January, 2001

TCPA Main Specification Page 251

9.5 Instantiation of Credentials as Certificates
Start of informative comment:

Unambiguous definition of a data structure containing credentials is necessary if those credentials are to
be communicated between platforms. A certificate is such an unambiguous definition.

End of informative comment.
Certificate syntax

TCPA certificate syntax conforms with the definitions for public-key certificates and attribute certificates in
X.509. The following TCPA certificate types are public-key certificates:

TPM endorsement certificate
TPM identity certificate
The following TCPA certificate types are attribute certificates:
Platform endorsement certificate
Platform conformance certificate
Validation data certificate
The form of the following certificates is out of scope for this version of the TPM specification:
TPM endorsement entity certificate
TCPA component endorsement entity certificate
Platform endorsement entity certificate

Platform conformance certificate

Version 1.0 25 January, 2001

TCPA Main Specification Page 252

9.5.1 Instantiation of TPM_ENDORSEMENT_CREDENTIALS
Start of informative comment:
An endorsement certificate is an instantiation of an TPM_ENDORSEMENT _CREDENTIAL.

Access to an endorsement certificate must be restricted to entities that have a “need to know.” This is for
reasons of privacy.

This definition assumes that the PUBEK is a 2048bit RSA keys.
End of informative comment.

If the data structure <endorsement_certificate> is stored on a platform after an Owner has taken
ownership of that platform, it SHALL exist only in storage to which access is controlled and is available to
authorized entities.

Overview

The TPM endorsement certificate represents an assertion by the TPM endorsement entity that the
referenced TPM conforms with the TCPA TPM specification.

Profile

Notes:

Some fields are assigned a value even though the certificate user performs no action based on
that value. In such cases, the intention is to inhibit non-TCPA implementations from making
inappropriate use of the certificate.

It is intended that the lifetime of a TPM will be shorter than the crypto-period of the TPM
endorsement public and private keys. Therefore, keys are not “rolled-over”.

The trustworthiness of the architecture is vulnerable to the compromise of a single TPM
endorsement private key. However, the architecture does not include a revocation mechanism.
Nevertheless, certain forms of revocation scheme can be retrofitted, should it become necessary
at some time in the future.

In the case of the TPM endorsement certificate, the issuer is the TPM endorsement entity and the user is
a Privacy CA.

Field Issuer action User action

Version Assign value 2 (v3). Check value = 2, else reject.

Serial number Assign a value unique amongst all Use in validating the platform endorsement
certificates issued by “issuer”. and conformance certificates.

Signature Assign the algorithm identifier sha- | Check the algorithm identifier =
1WithRSAEnNcryption 1:2:840:113549:1:1:5, else reject. Validate
(1:2:840:113549:1:1:5). the signature on the certificate using the

public key of the TPME (which shall be a
2048-bit RSA key), obtained by an out-of-
band means and referenced by “issuer” and
“authority key identifier”.

Issuer The distinguished name of the Check that the name is the name of one of
TPM endorsement entity. That is the acceptable TPM endorsement entities,
the entity that asserts that the use in validating the platform endorsement
subject TPM conforms with the and conformance certificates.

TCPA specification. (Note: this
may be the TPM manufacturer or a
conformance test laboratory.)

Version 1.0 25 January, 2001

TCPA Main Specification

Page 253

Validity

Subject

Subject public
key info

Issuer unique
identifier

Subject unique
identifier

Extensions

Authority key
identifier

Subject key
identifier

Key usage

Extended key
usage

Private key
usage period

Certificate
policies

Policy mappings

Subject
alternative name

Issuer alternative
name

Assign notBefore to the current
time and notAfter to a later time
(maybe the latest time permitted by
the encoding scheme).

Assign the value NULL.

Assign algorithm identifier RSAES-
OAEP (1:2:840:113549:1:1:7).
Include a 2048-bit RSA public key
for key encipherment with OAEP
formatting. (Note: this is the TPM
public endorsement key.)

Omit.

Omit.

Assign “critical" the value FALSE.
Assign the value of “subject key
identifier” from the manufacturer’s
certificate, if available, else omit.

Omit.

May be omitted. If included, then
the key encipherment bit shall be
set TRUE.

Omit.

Omit.

Assign “critical” the value TRUE.
Assign policyldentifier at least one
object identifier. Assign the cPSuri
policy qualifier the value of an
HTTP URL at which a plain
language version of the TPM
endorsement entity's certificate
policy may be obtained. Assign
the explicit text userNotice policy
qualifier the value “TCPA Trusted
Platform Module Endorsement”.

Omit.

Assign “critical" the value FALSE.
Include the TPM identity, using the
directory name-form with RDNs for
the TPM manufacturer, model and
version numbers.

Omit.

Check that the current time is later than the
notBefore time, else reject.

No action.

Use the public key in the TPM identity
protocol.

No action.

No action.

Use to locate the certificate that contains a
public key of the manufacturer with which the
signature on this certificate can be verified.

No action.

If present, then check that the key
encipherment bit is TRUE, else reject.

If present and marked critical, then reject.

If present, then check that the current time is
later than the notBefore time.

Check that at least one acceptable
policyldentifier value is present. Transfer the
acceptable policylnformation value to the
TPM identity certificate “certificate policies”
extension.

No action.

Check that the TPM manufacturer, model
and version numbers are acceptable.
Transfer to the TPM identify certificate
“subject alternative name” extension value
for the TPM.

No action.

Version 1.0 25 January, 2001

TCPA Main Specification

Page 254

Subject directory
attributes

Basic constraints

Name constraints
Policy constraints
Inhibit any policy

CRL distribution
points

Include a “subject directory
attributes” extension. Assign
“critical" the value FALSE. Include
the multi-valued attribute
“supported algorithms” (see
X.509). Include object identifiers
for the following algorithms:
RSAES-OAEP, SHA-1
(1.3.14.3.2.26) and TPM identity
protocol.

Include the "TCPA Specification
Version" attribute, with field values
correctly reflecting the highest
version of the TCPA specification
with which the TPM
implementation conforms.

Optionally, include the "security
qualities” attribute with a text string
reflecting the security qualities of
the TPM. (Note: this is the TPM
distributed validation.)

Assign “critical” the value TRUE.
Assign “CA” the value FALSE

Omit.
Omit.
Omit.
Omit.

Adapt the TPM identity protocol to use only
algorithms supported by the TPM.

Check that the TCPA specification version is
acceptable, else reject.

Optionally (and if present), check whether
the TPM implementation has acceptable
security qualities. Transfer to the TPM
identity certificate “subject directory
attributes” extension.

No action.

No action.
No action.
No action.

If present and marked critical, then reject.

Version 1.0 25 January, 2001

TCPA Main Specification Page 255

9.5.2 Instantiation of Platform_credentials

Start of informative comment:
A platform certificate is an instantiation of a platform_credential.

Access to the platform certificate must be restricted to entities that have a “need to know.” This is for
reasons of privacy.

End of informative comment.

If the data structure <platform_certificate> is stored on a platform after an Owner has taken ownership of
that platform, it SHALL exist only in storage to which access is controlled and is available to authorized
entities.

Overview

The Platform Endorsement Certificate represents an assertion by the platform endorsement entity that the
referenced platform incorporates a TPM and an RTM in a manner that conforms with the TCPA
specification.

Profile

Note: some fields are assigned a value even though the certificate user performs no action with that
value. In such cases, the intention is to inhibit non-TCPA implementations from making inappropriate use
of the certificate.

In the case of the Platform endorsement certificate, the issuer is the platform manufacturer and the user
is a Privacy CA.

Serial number

attrCertValidity
Period

(1:2:840:113549:1:1:5).

Assign a value unique amongst all
certificates issued by “issuer”.

Assign notBefore to the current time
and notAfter to a later time (maybe
the latest time permitted by the

Field Issuer action User action

Version Assign value 1 (v2). Check value = 1, else reject.

Holder BaseCertificateID referencing the | Check that the certificate ID correctly
corresponding TPM endorsement | references the TPM endorsement certificate
certificate. (Note: this is the TPM | used to validate the TPM identity request
credential reference.) message, else reject.

Issuer The distinguished name of the | Check that the name is the name of one of
platform endorsement entity. That is | the acceptable platform endorsement
the entity that asserts that the subject | entities.
platform incorporates a TPM and
RTM in a manner that conforms with
the TCPA specification. (Note: this
may be the platform manufacturer or
a conformance test laboratory.)

Signature Assign algorithm identifier sha- | Check algorithm identifier =
1WithRSAEnNcryption 1:2:840:113549:1:1:5, else reject. Validate

the signature on the certificate using the
public key of the Platform Endorsement
Entity (which should be a 2048-bit RSA key),
obtained by an out-of-band means and
referenced by “issuer” and “authority key

No action.

Check that the current time is later than the
notBefore time, else reject.

Version 1.0 25 January, 2001

TCPA Main Specification Page 256
encoding scheme).

Attributes A “supported algorithms” attribute | Transfer the object identifiers for any
(see X.509) indicating the | acceptable algorithms to the TPM identity
cryptographic algorithms supported by | certificate “subject directory attributes”
the platform. extension.

Include the "TCPA Specification | Check that the TCPA specification version is
Version" attribute, with field values | acceptable, else reject.

correctly reflecting the highest version

of the TCPA specification with which

the platform implementation

conforms.

If the TPM has been successfully | Optionally, check whether the identifier is
evaluated against a Common Criteria | acceptable. Transfer the protection profile
protection profile, then include the | identifier to the TPM identity certificate.

TPM protection profile identifier

attribute.

If the TPM has been successfully | Optionally, check whether the identifier is
evaluated against a Common Criteria | acceptable. Transfer the security target
security target, then include the TPM | identifier to the TPM identity certificate.
security target identifier attribute.

If the RTM and the means by which | Optionally, check whether the identifier is
the TPM and RTM have been | acceptable. Transfer the protection profile
incorporated into the platform have | identifier to the TPM identity certificate
been successfully evaluated against a | "subject directory attributes" extension.
Common Criteria protection profile,

then include the "foundation

protection profile" identifier attribute.

If the RTM and the means by which | Optionally, check whether the identifier is
the TPM and RTM have been | acceptable. Transfer the security target
incorporated into the platform have | identifier to the TPM identity certificate
been successfully evaluated against a | "subject directory attributes” extension.
Common Criteria security target, then

include the "foundation security

target" identifier attribute.

If there is, or will be, a Platform | Use the information to locate and retrieve the
Conformance Certificate, then a | corresponding Platform Conformance
ConformanceCertificateLocation Certificate.

attribute should be included to

indicate how, and from where, it can

be retrieved.

Optionally, include the “security | Optionally (and if present), check whether
qualities” attribute with a text string | the platform implementation has acceptable
reflecting the security qualities of the | security qualities. Transfer to the TPM
platform. (Note: this is the platform | identity certificate "subject directory
distributed validation.) attributes" extension.

Issuer unique | Omit. No action.

identifier

Extensions

Certificate Assign “critical” the value TRUE. [Check that at least one acceptable

policies Assign policyldentifier at least one | policyldentifier value is present. Transfer the

Version 1.0 25 January, 2001

TCPA Main Spec

policies

Subject
alternative
name

Authority key
identifier

SOA ldentifier

Authority
Attribute
Identifier

Role
Specification
Certificate
Identifier

Basic Attribute
Constraints

Delegated
Name
Constraints

Time
Specification
Acceptable

Certificate
Policies

Attribute
Descriptor

User Notice

No
Available

Rev

Acceptable
Privilege
Policies

from the platform
endorsement entity certificate, if
available, else omit.
Omit.
Omit.
Omit.
Assign “critical” the value TRUE.

Assign “authority” the value FALSE.
Omit.

Omit.

Assign “critical” the value TRUE.
Assign one or more of the values of
policyldentifier from the certificate
policies extension of the TPM
endorsement certificate.

Omit.

Omit.

Omit.

Omit.

Page 257

policylnformation value to the TPM identity
certificate "certificate policies" extension.

Check that the manufacturer, model and
version numbers are acceptable. Transfer to
the TPM identity certificate “subject
alternative name” extension.

The certificate user may use this value to
locate the certificate that contains a public
key of the platform endorsement entity with
which the signature on this certificate can be
verified.

No action.

No action.

No action.

Check that “authority” is FALSE.

No action.

No action.

Check that the certificate policies extension
of the TPM endorsement certificate contains
at least one of the values.

No action.

No action.

No action.

No action.

Version 1.0 25 J:

TCPA Main Specification

9.5.3 Instantiation of TPM_CONFORMANCE

Overview

The Platform Conformance Certificate represents an asser

referenced platform conforms with the TCPA specification.

Profile

Note: some fields are assigned a value even though thi
In such cases, the intention is to inhibit non-TCPA

value.
of the certificate.

In the case of the Platform conformance certificate, the it

is a Privacy CA.

Field

Issuer action

Version

Holder

Issuer

Signature

Serial number

attrCertValidity
Period

Attributes

Assign value 1 (v2).

Include the platform name, uniquely
identifying the type of the platform
with RDNs for the manufacturer,
model and version numbers.

The distinguished name of the
platform conformance entity. That is
the entity that asserts that the design
of the platform conforms with the
TCPA specification. (Note: this may
be the platform manufacturer or a
conformance test laboratory.)

Assign algorithm identifier sha-
1WithRSAEnNcryption

(1:2:840:113549:1:1:5).

Assign a value unique amongst all
certificates issued by “issuer”.

Assign notBefore to the current time
and notAfter to a later time (maybe

the latest time permitted by the
encoding scheme).
Include a “supported algorithms”

attribute (see X.509) indicating the
algorithms supported by the platform.

Include the "TCPA specification
version" attribute, with field values
correctly reflecting the highest version
of the TCPA specification with which
the platform implementation
conforms.

No action.

Check that the current time is later than the
notBefore time, else reject.

Transfer the object identifiers for any
acceptable algorithms to the TPM identity
certificate “subject directory attributes”
extension.

Check that the TCPA specification version is
acceptable, else reject.

Version 1.0 25 January, 2001

TCPA Main Specification

Page 259

Issuer
identifier

unique

Extensions

Certificate
policies

Subject
alternative
name

Authority key
identifier

SOA Identifier

Authority
Attribute

If the TPM has been successfully
evaluated against a Common Criteria

protection profile, then include the
TPM protection profile identifier
attribute.

If the TPM has been successfully
evaluated against a Common Criteria
security target, then include the TPM
security target identifier attribute.

If the RTM and means by which the
RTM and TPM are incorporated into
the platform has been successfully
evaluated against a Common Criteria
protection profile, then include the
foundation protection profile identifier
attribute.

If the RTM and the means by which
the RTM and TPM have been
incorporated into the platform have
been successfully evaluated against a
Common Criteria security target, then
include the foundation security target
identifier attribute.

Omit.

Assign “critical” the value TRUE.
Assign policyldentifier at least one
object identifier. Assign the cPSuri
policy qualifier the value of an HTTP
URL at which a plain language
version of the platform conformance
entity's certificate policy may be
obtained. Assign the explicit text
userNotice policy qualifier the value
“TCPA Conformance Credential”.

Assign “critical” the value FALSE.
Include the platform name, uniquely
identifying the type of the platform

with RDNs for the platform
manufacturer, model and version
numbers.

Assign “critical” the value FALSE.
Assign the value of “subject key
identifier” from the platform
conformance entity's public-key
certificate, if available, else omit.

Omit.

Omit.

Check that the identifier is acceptable.
Transfer the protection profile identifier to the
TPM identity certificate.

Check that the identifier is acceptable.
Transfer the security target identifier to the
TPM identity certificate.

Check that the identifier is acceptable.
Transfer the protection profile identifier to the
TPM identity certificate "subject directory
attributes" extension.

Check that the identifier is acceptable.
Transfer the security target identifier to the
TPM identity certificate "subject directory
attributes" extension.

No action.

Check that at least one acceptable
policyldentifier value is present. Transfer the
policylnformation value to the TPM identity
certificate.

Check that the manufacturer, model and
version numbers are identical to those in the
platform endorsement certificate "subject
alternative name" extension.

The certificate user may use this value to
locate the certificate that contains a public
key of the platform conformance entity with
which the signature on this certificate can be
verified.

No action.

No action.

Version 1.0 25 January, 2001

TCPA Main Specification

Page 260

Identifier

Role
Specification
Certificate
Identifier

Basic Attribute
Constraints

Delegated
Name
Constraints

Time
Specification
Acceptable

Certificate
Policies

Attribute
Descriptor

User Notice

No Rev
Available

Acceptable
Privilege
Policies

Omit.

Assign “critical” the value TRUE.
Assign “authority” the value FALSE.

Omit.

Omit.

Omit.

Omit.

Omit.
Omit.

Omit.

No action.

Check that “authority” is FALSE.

No action.

No action.

No action.

No action.

No action.

No action.

No action.

Version 1.0 25 January, 2001

TCPA Main Specification

9.5.4

Instantiation of Validation Certificate

Start of informative comment:

Page 261

A “Validation Data Attribute Certificate” is an instantiation of validation data.

End of informative comment.

Overview

The validation data certificate represents an assertion by the component validation entity that the
component instructions referenced by the certificate have the attributes conveyed in the certificate. The
certificate syntax conforms with the X.509 definition for an attribute certificate.

In the case of the validation certificate, the issuer is the Validation Entity and the user is a TPS.

Field Issuer action User action

Version Assign value 1 (v2). Check value = 1, else reject.

Holder ObjectDigestinfo with missing object | Calculate the digest of the memory
identifier. The value of objectDigest shall | image of the software instructions and
be the digest calculated over the memory | check that it is identical to the value in
image of the software instructions using | this field prior to passing control to the
the identified digest algorithm. component, else reject.

Issuer The distinguished name of the | Check that the name is the name of one
component validation entity. That is the | of the acceptable component validation
entity that asserts that the component | entities.
exhibits the attributes contained in the
certificate. (Note: typically, but not
necessarily, the manufacturer of the
component).

Signature Assign algorithm identifier sha- [Check algorithm identifier =
1WithRSAEncryption 1:2:840:113549:1:1:5, else reject.

(1:2:840:113549:1:1:5).

Validate the signature on the certificate
using the public key of the software
manufacturer (which should be a 2048-bit
RSA key), obtained by an out-of-band
means and referenced by “issuer” and
“authority key identifier”.

Serial number

Assign a value unique amongst all
certificates issued by “issuer”.

No action.

attrCertValidityPe
riod

Assign notBefore to the current time and
notAfter to a later time (maybe the latest
time permitted by the encoding scheme).

Check that the current time is later than
the notBefore time, else reject.

Attributes

Include the "TCPA specification version"

attribute, with field values correctly
reflecting the highest version of the
TCPA specification with which the

component conforms.

Check that the TCPA specification
version is acceptable, else reject.

Optionally, include the "security qualities”
attribute with a text string reflecting the
security qualities of the component.
(Note: this is the component distributed
validation.)

Optionally (and if present), check
whether the component implementation
has acceptable security qualities.

Version 1.0 25 January, 2001

TCPA Main Specification

Page 262

Issuer unique | Omit. No action.
identifier
Extensions
Certificate Assign “critical” the value TRUE. Assign | Check that at least one acceptable
policies policyldentifier at least one object | policyldentifier value is present.
identifier. Assign the cPSuri policy
qualifier the value of an HTTP URL at
which a plain language version of the
component conformance entity's
certificate policy may be obtained.
Assign the explicit text userNotice policy
qualifier the value “TCPA Validation
Subject Assign “critical" the value FALSE. | May be used to determine whether or not

Alternative Name

Include the component name, using the
"component name" attribute, with RDNs
for the component manufacturer, model
and version numbers.

the component is trustworthy.

Authority key | Assign “critical” the value FALSE. Assign | The certificate user may use this value to

identifier the value of “subject key identifier” from | locate the certificate that contains a
the component validation entity | public key of the component validation
certificate, if available, else omit. entity with which the signature on this

certificate can be verified.

SOA Identifier Omit. No action.

Authority Omit. No action.

Attribute

Identifier

Role Omit. No action.

Specification

Certificate

Identifier

Basic Attribute | Assign “critical” the value TRUE. Assign | Check that “authority” is FALSE.

Constraints

“authority” the value FALSE.

Delegated Name [Omit. No action.
Constraints

Time Omit. No action.
Specification

Acceptable Omit. No action.
Certificate

Policies

Attribute Omit. No action.
Descriptor

User Notice Omit. No action.
No Rev Available Omit. No action.
Acceptable Omit. No action.

Privilege Policies

Version 1.0 25 January, 2001

TCPA Main Specification Page 263

Version 1.0 25 January, 2001

TCPA Main Specification Page 264

9.5.5 Instantiation of TPM_IDENTITY_CREDENTIAL
Start of informative comment:
A TPM identity certificate is an instantiation of a TPM_IDENTITY_CREDENTIAL.

Access to the TPM identity certificate must be restricted to entities that have a “need to know.” This is for
reasons of privacy.

This definition assumes that TPM identity keys are 2048bit RSA keys.
End of informative comment.

If the data structure <TPM identity certificate> is stored on a platform after an Owner has taken ownership
of that platform, it SHALL exist only in storage to which access is controlled and is available to authorized
entities.

Overview

The TPM identity certificate represents an assertion by the Privacy CA that the referenced TPM identity is
controlled by a TPM that conforms with the TPM specification. It contains a different public key to that
contained in the TPM endorsement certificate, but it contains identifying and policy information transferred
from the TPM endorsement, platform endorsement and platform conformance certificates.

Profile
Note:

Some fields are assigned a value even though the certificate user performs no action with that
value. In such cases, the intention is to inhibit non-TCPA implementations from making
inappropriate use of the certificate.

The policies identified in the TPM and platform certificates are represented by oids and are not
distinguishable except by reference to the contents of the policies themselves. The verifier,
however, must be able to distinguish between the different policy types.

In the case of the TPM identity certificate, the issuer is the Privacy CA and the user is an integrity
verifier.

Field Issuer action User action

Version Assign value 2 (v3). Check value = 2, else reject.

Serial number | Assign a value unique amongst all | No action.
certificates issued by “issuer”.

Signature Assign algorithm identifier sha- | Check the algorithm identifier =
1WithRSAEnNcryption 1:2:840:113549:1:1:5, else reject. Validate
(1:2:840:113549:1:1:5). the signature on the certificate using the

public key of the Privacy CA (which should
be a 2048-bit RSA key), obtained by an out-
of-band means and referenced by “issuer”
and “authority key identifier”.

Issuer The distinguished name of the Privacy | Check that the name is the name of an
CA. acceptable Privacy CA.

Validity Assign notBefore to the current time | Check that the current time is later than the
and notAfter to a later time (maybe | notBefore time, else reject.
the latest time permitted by the
encoding scheme).

Subject NULL. No action.

Subject public | Assign algorithm identifier sha- | Check algorithm identifier =

Version 1.0 25 January, 2001

TCPA Main Specification

Page 265

key info

Issuer
identifier

unique

Subject
unigue
identifier

Extensions

Authority key
identifier

Subject
identifier

key

Key usage

Extended key
usage

Private key
usage period

Certificate
policies

Policy
mappings

Subject
alternative
name

1WithRSAEnNcryption
(1:2:840:113549:1:1:5). The 2048-bit
RSA public key provided to the
Privacy CA by the TPM owner in the
identity request message.

Omit.
Omit.
Assign “critical” the value FALSE.
Assign the value of “subject key
identifier” from the Privacy CA’s

public-key certificate, if available, else
omit.

Omit.

May be omitted. If included, then the
digital signature bit shall be set TRUE.

Omit.

Omit.

Assign “critical” the value TRUE.
Assign policyldentifier at least one
object identifier. Optionally, assign
the cPSuri the value of an HTTP URL
at which a plain language version of
the Privacy CA'’s certificate policy may
be obtained. Assign the explicit text
userNotice policy qualifier the value
“TCPA Trusted Platform Identity”.
Also, include the policylnformation
values from the certificate policies
extensions of the TPM endorsement
and platform endorsement and
conformance certificates provided in
the TPM identity request message.

Omit.

Assign “critical” the value FALSE.
Include three values in the extension:

The TPM manufacturer, model and
version numbers from the TPM
endorsement certificate “subject

alternative name” extension provided
in the TPM identity request message;

The platform manufacturer, model

1:2:840:113549:1:1:5,
public key in the
procedure.

else reject. Use the
integrity verification

No action.

No action.

The certificate user may use this value to
locate the certificate that contains a public
key of the Privacy CA with which the
signature on this certificate can be verified.

No action.

If present, then check that
signature bit is TRUE, else reject.

the digital
If present and marked critical, then reject.
If present, then check that the current time is

later than the notBefore time, else reject.

Check that at least one acceptable Privacy

CA policyldentifier value is present.
Optionally, check that at Ileast one
acceptable TPM endorsement, one
acceptable platform endorsement and one
acceptable platform conformance
policyldentifier value are present.

No action.

Check that the manufacturer, model and

version numbers of the TPM and of the
platform are acceptable.

Version 1.0 25 January, 2001

TCPA Main Specification

Page 266

Issuer
alternative
name

Subject
directory
attributes

and version numbers from the
platform endorsement certificate
“subject alternative name” extension
provided in the TPM identity request
message; and

The TPM identity label provided to the
Privacy CA by the TPM owner in the
identity request message, encoded as
a TPMidLabel other-name. The TPM
owner should choose a label syntax
and semantics that are understood by
the integrity verifier. (Note: the
specified syntax accommodates multi-
byte character sets).

Omit.

Assign “critical” the value FALSE.
Include a multi-valued “supported
algorithms” (see X.509) attribute
containing object identifiers from the
“subject directory attributes” extension
of the TPM endorsement -certificate
and the “attributes” field of the
platform endorsement certificate and
the platform conformance certificate
provided in the TPM identity request
message.

Include the single-valued "TPM
protection profile" attribute from the
platform endorsement certificate
provided in the TPM identity request
message.

Include the single-valued "TPM
security target" attribute from the
platform endorsement certificate
provided in the TPM identity request
message.

Include the single-valued "Foundation
protection profile" attribute from the
platform endorsement certificate
provided in the TPM identity request
message.

Include the single-valued "Foundation
security target" attribute from the
platform endorsement certificate
provided in the TPM identity request
message.

Include the ‘"security qualities"
attribute from the TPM endorsement
certificate provided in the TPM identity
request message. (Note: this is the

No action.

Adapt the integrity verification protocol to use
only algorithms supported by the TPM and
the associated platform.

Check that the identifier is acceptable.

Check that the identifier is acceptable.

Check that the identifier is acceptable.

Check that the identifier is acceptable.

Optionally (and if present), check whether
the TPM has acceptable security qualities.

Version 1.0 25 January, 2001

TCPA Main Specification

Page 267

Basic
constraints

Name
constraints

Policy
constraints
Inhibit
policy

CRL

distribution
points

any

TPM distributed validation.)

Include the "security qualities"
attribute from the platform
endorsement certificate provided in
the TPM identity request message.
(Note: this is the platform distributed
validation.)

Include the “tcpaVersion" attribute
provided in the TPM identity request
message.

Assign “critical” the value TRUE.

Assign “CA” the value FALSE.
Omit.
Omit.

Omit.

Omit.

Optionally (and if present), check whether
the platform has acceptable security
qualities.

Check that the TCPA specification version is
acceptable, else reject.

No action.

No action.

No action.

No action.

If present and marked critical, then reject.

Version 1.0 25 January, 2001

TCPA Main Specification Page 268

9.5.6 ASN.1 Definitions
Start of informative comment:

The intention is to register TCPA as an “international body” in the ISO registration hierarchy. This will lead
to shorter oids (object identifiers) and gives TCPA autonomy in the management of its own object
identifiers.

End of informative comment.
The syntax of the "security qualities" attribute is as follows:

SecurityQualities ATTRIBUTE ::= {
W TH SYNTAX SecurityQualities
ID tcpa-tpnSecurityQualities }

SecurityQualities ::= SEQUENCE {
version INTEGER, --0 for this version of the attribute syntax --
statement [O0] UTF8String }

Note: future versions of this certificate profile may define additional, optional, "security qualities” fields.
Inclusion of the "statement" field will remain mandatory.

The syntax of the "TCPA Specification Version" attribute is as follows:

TCPASpecVer si on ATTRI BUTE :: = {
W TH SYNTAX TCPASpecVer si on
I D tcpa-specVersion }

TCPASpecVersi on ::= SEQUENCE {
maj or | NTECGER,
m nor | NTEGER }

The syntax of the protection profile and security target attributes is as follows:

TPMProt ectionProfile ATTRIBUTE ::= {
W TH SYNTAX ProtectionProfile
ID tcpa-at-tpnmProtectionProfile }

TPMSecurityTarget ATTRIBUTE ::= {
W TH SYNTAX SecurityTarget
I D tcpa-at-tpnSecurityTarget }

Foundati onProtecti onProfile ATTRIBUTE ::= {
W TH SYNTAX ProtectionProfile
I D tcpa-at-foundati onProtectionProfile }

Foundati onSecurityTarget ATTRIBUTE ::= {
W TH SYNTAX SecurityTarget
| D tcpa-at-foundationSecurityTarget }
ProtectionProfile ::= OBJECT | DENTI FI ER
SecurityTarget ::= OBJECT | DENTIFI ER

The syntax of the "component name" attribute is as follows:

Conponent Name ATTRI BUTE :: = {
W TH SYNTAX Nanme
I D tcpa-at-conmponent Nane }

Version 1.0 25 January, 2001

TCPA Main Specification Page 269

The following definitions define the syntax of the RDNs used in the subject alternative name extension to
identify the type of the TPM and the platform.

Tpmvanuf acturer ATTRIBUTE :: = {
W TH SYNTAX UTF8Stri ng
I D tcpa-at-tpmvanufacturer }

Tpmivbdel ATTRI BUTE :: = {
W TH SYNTAX UTF8Stri ng
I D tcpa-at-tpmvodel }

Tpmver si on ATTRI BUTE :: = {
W TH SYNTAX UTF8Stri ng
I D tcpa-at-tpnmersion }

Pl at f or mMvanuf acturerl ATTRIBUTE ::= {
W TH SYNTAX UTF8Stri ng
I D tcpa-at-platfornmvanufacturer }

Pl at f or mvbdel ATTRI BUTE ::= {
W TH SYNTAX UTF8Stri ng
I D tcpa-at-platfornvbdel }

Pl at f or ner si on ATTRI BUTE :: = {
W TH SYNTAX UTF8Stri ng
I D tcpa-at-platfornversion }

TPM dLabel OTHER-NAME ::= {UTF8String | DENTIFI ED BY {tcpa-at-tpm dLabel }}

--Object identifier assignments—

tcpa OBJECT | DENTI FI ER :: = {TBD}

t cpa- specVer si on OBJECT | DENTIFIER ::= {tcpa-1}
tcpa-attribute OBJECT I DENTIFIER ::= {tcpa-2}

t cpa- prot ocol OBJECT I DENTIFIER ::= {tcpa-3}

t cpa- at - t pmvanuf act ur er OBJECT IDENTIFIER ::= {tcpa-attribute 1}
t cpa- at - t pmivbdel OBJECT IDENTIFIER ::= {tcpa-attribute 2}
t cpa- at -t pnVer si on OBJECT IDENTIFIER ::= {tcpa-attribute 3}
t cpa- at - pl at f or mvanuf act urer OBJECT IDENTIFIER ::= {tcpa-attribute 4}
t cpa- at - pl at f or mvbdel OBJECT IDENTIFIER ::= {tcpa-attribute 5}
t cpa- at - pl at f or mVer si on OBJECT IDENTIFIER ::= {tcpa-attribute 6}
t cpa- at - conponent Manuf act ur er OBJECT IDENTIFIER ::= {tcpa-attribute 7}
t cpa- at - conmponent Model OBJECT IDENTIFIER ::= {tcpa-attribute 8}
t cpa- at - conponent Ver si on OBJECT IDENTIFIER ::= {tcpa-attribute 9}
tcpa-at-securityQualities OBJECT IDENTIFIER ::= {tcpa-attribute 10}
tcpa-at-tpnProtectionProfile OBJECT IDENTIFIER ::= {tcpa-attribute 11}
tcpa- at-tpnSecurityTarget OBJECT IDENTIFIER ::= {tcpa-attribute 12}
tcpa- at-foundationProtecti onProfile OBJECT IDENTIFIER ::= {tcpa-attribute 13}
t cpa- at - foundati onSecurityTar get OBJECT IDENTIFIER ::= {tcpa-attribute 14}
tcpa- at-tpm dLabel OBJECT IDENTIFIER ::= {tcpa-attribute 15}
tcpa-prt-tpm dProtocol OBJECT | DENTI FIER ::= {tcpa-protocol 1}

Version 1.0 25 January, 2001

TCPA Main Specification Page 270

10. Conformance Criteria

10.1 Base Levels for Interoperability

The algorithms and protocols in this specification are the REQUIRED algorithms and potocols. A TPM
subsystem MAY support additional algorithms and protocols. When this specification specifies the use of
the TSS for a feature, an implementation MAY place the feature in the TPM.

10.2 Conformance Specification Sheet

10.3 Protocol Negotiation and Algorithm Agility

Version 1.0 25 January, 2001

TCPA Main Specification Page 271

The TPM MUST support the base algorithms specified for each operation. The TPM MAY support
additional algorithms and parameters.

The TPM manufacturer MUST include in the TPM credential all algorithms that the TPM supports.
The TSS manufacturer MUST include in the platform credential all algorithms that the TSS supports.

10.4 Cryptographic Algorithms and Protocols

10.4.1 Asymmetric

The TPM MUST support RSA.

The TPM MUST use the RSA algorithm for encryption and digital signatures.

The TPM MUST support key sizes of 512, 1024, and 2048 bits. The TPM MAY support other key
sizes. The minimum RECOMMENDED key size is 1024 bits.

The RSA public exponent MUST be e, where e = 21041,

TPM devices that use CRT as the RSA implementation MUST provide protection and detection of failures
during the CRT process to avoid attacks on the private key.

The TPM MAY implement other asymmetric algorithms such as DSA or elliptic curve. These algorithms
may be in use for wrapping, signatures, and other operations. There is no guarantee that these keys can
migrate to other TPM devices or that other TPM devices will accept signatures from these additional
algorithms.

Version 1.0 25 January, 2001

TCPA Main Specification Page 272

10.4.2Symmetric

The TSS MUST support 3DES. 3DES SHOULD be the symmetric algorithm of choice. The key size of
3DES MUST be 196 bits (three 64-bit keys). 3DES MUST be run in encrypt-decrypt-encrypt (EDE) mode.
The TSS MUST provide detection of weak 3DES keys.

The TSS MUST support DES. The key size for DES MUST be 64 bits (56 bits plus parity). The TSS
MUST provide detection of weak DES keys.

The TSS SHOULD have support for AES when it becomes available.
A TPM MUST support the storage of at least 256-bit symmetric keys.

10.4.3Hashing

The TPM MUST support the SHA-1 hash algorithm as defined by FIPS-181. The output of SHA-1 is 160
bits and all areas that expect a hash value are REQUIRED to support the full 160 bits.

10.4.4Signature Operations
The TPM MUST use the RSA algorithm for signature operations.

The TPM MAY use other asymmetric algorithms for signatures; however, there is no requirement that any
other TPM device either accept or verify those signatures.

The TPM MUST use P1363 for the format and design of the signature output.

Version 1.0 25 January, 2001

TCPA Main Specification Page 273

10.4.5Creating a PCR composite hash

The definition specifies the operation necessary to create TCPA_COMPOSITE_HASH.
Action

The hashing MUST be done using the SHA-1 algorithm.

The input must be a valid TCPA_PCR_SELECTION structure.

The process creates a TCPA_PCR_COMPOSITE structure from the TCPA_PCR_SELECTION structure
and the PCR values to be hashed. If constructed by the TPM the values MUST come from the current
PCR registers indicated by the PCR indices in the TCPA_PCR_SELECTION structure.

The process then computes a SHA-1 digest of the TCPA_PCR_COMPOSITE structure.
The output is the SHA-1 digest just computed.

10.4.6Using Secret Keys

Informative comments:

Secret keys can be loaded into a TPM, but preferably are generated inside the TPM.

A TPM generated key must not be used as a secret key if it has already been exposed.
Secret keys obtained from blobs must not be exposed outside the TPM.

End of informative comments.

A secret key is a key that is a private asymmetric key or a symmetric key.

Data SHOULD NOT be used as a secret key by a TCPA protected capability unless that data has been
extant only in a shielded location.

A key generated by a TCPA protected capability SHALL NOT be used as a secret key unless that key
has been extant only in a shielded location.

A secret key obtained by a TCPA protected capability from a Protected Storage blob SHALL be extant
only in a shielded location.

Version 1.0 25 January, 2001

TCPA Main Specification Page 274

10.5 Random Number Generator (RNG)

Start of informative comment:

The Random Number Generator (RNG) is the source d randomness in the TPM. The TPM uses these
random values for nonces, key generation and randomness in signatures.

The understanding is that this definition of the RNG, depending on implementation, could be a Pseudo
Random Number Generator (PRNG). On those devices that have a hardware source of entropy, this
implementation may be an RNG and not a PRNG so there is no need for to keep track of which is which;
that is, the specification will always use RNG.

End of informative comment.
The RNG for the TPM will consist of the following components:
Entropy source and collector
State register
Mixing function
The RNG capability is a TPM-protected capability with no access control.

The RNG output may or may not be shielded data. When the data is for internal use by the TPM (e.g.,
asymmetric key generation) the data MUST be held in a shielded location. When the data is for use by
the TSS or another external caller, the data is not shielded.

10.5.1Entropy Source and Collector

Start of informative comment:

The entropy source is the process or processes that provide entropy. These types of sources could
include noise, clock variations, air movement, and other types of events.

The entropy collector is the process that collects the entropy, removes bias, and smoothes the output.
The difference between the collector and the mixing function (described in section 10.6.3, “Mixing
Function”) is that the collector may have special code to handle any bias or skewing of the raw entropy
data. For instance, if the entropy source has a bias of creating 60 percent 1s and only 40 percent 0s, then
the collector design takes that bias into account before sending the information to the state register.

End of informative comment.

The entropy source MUST provide entropy to the state register in a manner that provides entropy that is
not visible to an outside process. For compliance purposes, the entropy source MAY be in the TSS and
not the TPM; however, attention MUST be paid to the reporting mechanism.

The entropy source MUST provide the information only to the state register. The entropy source may
provide information that has a bias, so the entropy collector must remove the bias before updating the
state register. The bias removal could use the mixing function or a function specifically designed to
handle the bias of the entropy source. The entropy source can be a single device (such as hardware
noise) or a combination of events (such as disk timings). It is the responsibility of the entropy collector to
update the state register whenever the collector has additional entropy.

10.5.2State Register

Start of informative comment:

The state register implementation may use two registers: a non-volatile register and a volatile register.
The TPM loads the volatile register from the non-volatile register on startup. Each subsequent change to
the state register from either the entropy source or the mixing function affects the volatile state register.
The TPM saves the current value of the volatile state register to the non-volatile register on TPM power-

Version 1.0 25 January, 2001

TCPA Main Specification Page 275

The state register is in a TPM-shielded location. The state register MUST be non-volatile. The update
function to the state register is a TPM-protected capability. The primary input to the update function
SHOULD be the entropy collector.

If the current value of the state register is unknown, calls made to the update function with known data
MUST NOT result in the state register ending up in a state that an attacker could know. This requirement
implies that the addition of known data MUST NOT result in a decrease in the entropy of the state
register.

The TPM MUST NOT export the state register.

10.5.3Mixing Function

Each use of the mixing function MUST affect the state register. This requirement is to affect the volatile
register and does not need to affect the non-volatile state register.

10.5.4RNG Reset

The RNG MUST NOT output any bits after a system reset until the following occurs:

The entropy collector performs an update on the state register. This does not include the adding of
the previous state but requires at least one bhit of entropy.

The mixing function performs a self-test. This self-test MUST occur after the loading of the previous
state. It MAY occur before the entropy collector performs the first update.

10.6 Key Generation

Version 1.0 25 January, 2001

TCPA Main Specification Page 276

10.6.1 Asymmetric

The TPM MUST generate asymmetric key pairs. The generate function is a protected capability and the
private key is held in a shielded location. The implementation of the generate function MUST be in
accordance with P1363.

The prime-number testing for the RSA algorithm MUST use the definitions of P1363. If additional
asymmetric algorithms are available, they MUST use the definitions from P1363 for the underlying basis
of the asymmetric key (for example, elliptic curve fitting).

10.6.2 Symmetric

The TSS MUST generate a symmetric key by taking the next n bits from the TPM RNG.

The TSS SHOULD provide any processing of a symmetric key. Processing is an algorithm-specific
operation and implementation is left to the designer.

10.6.3Nonce Creation

The creation of all nonce values MUST use the next n bits from the TPM RNG.

10.7 Auditing
Start of informative comment:

The TPM and TSS must be able to report a log of events. The log uses the same paradigm as the PCRs,
the TPM keeps a PCR value that extends for each log event, and the TSS maintains the log entries for
Challengers to review.

The TPM generates an audit event and the TSS creates the log. The protection of the log is a TSS
requirement. The TSS is responsible for collecting each audit log event.

The TPM uses a PCR and extends it for each audit event. The TSS can use the PCR to create a log that
shows any attempt to tamper with it.

The TPM Owner can select the operations that will generate an audit event.

End of informative comment.

The TPM MUST be able to generate audit events for all TCPA protected capabilities.

The TPM Owner MUST be able to select the functions that will generate an audit event at any time.

The TPM MUST provide a PCR to store and log the audit events. The TPM MUST allow for the reporting
of the current audit log PCR value. The value that the TPM adds to the TPM audit PCR MUST be the
TCPA_AUDIT_EVENT structure.

The TSS MUST provide a log of all TPM-generated events. The TPM will generate the event and the TSS
will fill in the event details. The TPM SHALL provide as much detail as it has available; however, the TSS
MUST fill in all remaining details for the audit event. For instance, the audit event will require a data and
time stamp on the event. There is no requirement for a clock function in the TPM, so the date and time
would come normally from the TSS.

The TPM MAY generate audit events for other functions and activities not on this list.

10.8 Self-Tests

The TPM MUST provide startup self-tests. The TPM MUST provide mechanisms to allow the self-tests to
be run on demand. The response from the self-tests is pass or fail.

The TPM MUST complete the startup self-tests in a manner and timeliness that allows the TPM to be of
use to the BIOS during the collection of integrity metrics. The TPM MUST complete the required checks

Version 1.0 25 January, 2001

TCPA Main Specification Page 277

before a given feature is in use. This requirement allows the TPM to test the integrity metric storage and
allow its use while simultaneously continuing to test the signature engine.

There are two sections of startup self-tests: required and recommended. The recommended tests are not
a requirement due to timing constraints. The TPM manufacturer should perform as many tests as possible
in the time constraints.

The TPM MUST report the tests that it performs.

The TPM MUST provide a mechanism to allow for any self-test to execute on request by any Challenger.
The testing can be the entire suite of tests or an individual test.

The TPM MUST provide for testing of some operations during each execution of the operation.

10.8.1Required Self-Tests
The TPM MUST check the following:
RNG functionality. This test follows FIPS 140-1, which checks the functioning of an RNG.

Reading and extending the integrity registers. The self-test for the integrity registers will leave the
integrity registers in a known state.

Endorsement key pair integrity. This requirement specifies that the TPM will verify that the
endorsement key pair can sign and verify a known value. This test also tests the RSA sign and verify
engine.

The integrity of the protected capabilities of the TPM. This means that the TPM must ensure that its
“microcode” has not changed, and not that a test must be run on each function.

Any tamper-resistance markers. The tests on the tamper-resistance or tamper-evident markers are
under programmable control. There is no requirement to check tamper-evident tape or the status of
epoxy surrounding the case.

10.8.2Recommended Checks

The TPM SHOULD check the following:

The hash functionality. This check will hash a known value and compare it to an expected result.
There is no requirement to accept external data to perform the check. The TPM MAY support a test
using external data.

Any symmetric algorithms. This check will use known data with a random key to encrypt and decrypt
the data.

Any additional asymmetric algorithms. This check will use known data to encrypt and decrypt.
The key-wrapping mechanism. The TPM should wrap and unwrap a key. The TPM MUST NOT use
the endorsement key pair for this test.

10.8.3Self-Test Failure

When the TPM detects a failure during any self-test, the part experiencing the failure MUST enter a shut-
down mode. This shut-down mode will allow only the following operation to occur:

Update. The update function must be available to recover the addition of invalid microcode.

All other operations will return the error code TCPA_FAILEDSELFTEST.

10.9 Object Reuse

The TPM MUST destroy and erase all temporal objects when the TPM finishes processing the object. The
use of an object can be a long-term operation. For instance, the TPM could load an identity key and keep
the key in memory while performing multiple challenge and response operations. There is no requirement

Version 1.0 25 January, 2001

TCPA Main Specification Page 278

to unload the object after each operation, but there is a requirement that the object be properly disposed
of when all operations are complete.

When an internal TPM process uses objects, no information regarding the object may be available to
outside processes. The TPM MUST enforce access control to all objects carrying sensitive information.

10.10Maintenance

The maintenance feature MUST ensure that the information can be on only one TPM at a time.
Maintenance MUST ensure that at no time the pocess will expose a shielded location. Maintenance
MUST require the active participation of the Owner.

10.11Backup

The TPM MUST support the backup feature. The TPM MUST create a blob of migratable data that is
readable by any other TPM. A receiving TPM MAY reject a backup blob if the underlying information is a
non-standard size or algorithm.

10.12Strength of Function

Version 1.0 25 January, 2001

TCPA Main Specification Page 279

The TPM MUST report the SOF values to a Challenger and the SOF values MUST be part of the TPM
endorsement certificate and the platform conformance certificate.

10.13Protection Profile

10.14Compliance to Specification

Version 1.0 25 January, 2001

TCPA Main Specification Page 280

10.15Field Upgrade

The TPM SHOULD have provisions for upgrading the subsystem dter shipment from the manufacturer. If
provided the mechanism MUST follow the requirement from section 8.15 .

10.16Physical Presence or Access

The requirement for physical presence MUST be met by the platform manufacturer using some physical
mechanism.

Version 1.0 25 January, 2001

TCPA Main Specification Page 281

10.170ther Specifications

Individual manufacturers MAY do the additional design and testing to obtain a FIPS 140 certification, but
there is no requirement that a TCPA device obtain this testing.

Specifications or standards included in this specification
PKCS#1: RSA Data Security, Inc. Public-Key Cryptography Standards (PKCS) Version 2.0
0 RSAES_OAEP (2.0)
0 RSASSA-PKCS1-v1 5

[TU-T Recommendation X.509 | ISO/IEC 9594-8: “Information technology -hOpen Systems
Interconnection — The Directory: Public-key and attribute certificate frameworks”, 4" Edition.

DES/3DES: Data Encryption Standard FIPS 46-3 (DES) : National Institute of Standards and
Technology

ASN.1: Abstract Syntax Notation One : ITU-T Recommendations X.680-X.683

FIPS 140-1: Federal Information Processing Standards Publication 140-1 “Security Requirements
for Cryptographic Modules”

BER: Basic Encoding Rules : ITU-T Recommendation X.690-691 (1997)
ISO 15408 (Common Criteria)

SHA-1: Secure Hash Algorithm : NIST FIPS PUB 180-1, “Secure Hash Standard,” : National
Institute of Standards and Technology

RFC 2104 (HMAC)

Version 1.0 25 January, 2001

TCPA Main Specification Page 282

11. Appendix A: Glossary

3DES
DES using a key of a size that is 3X the size that of a DES key. See DES.
Blob

Opaque data of fixed or variable size. The meaning and interpretation of the data is outside the scope
and context of the Subsystem.

Challenger
An entity that requests and has the ability to interpret integrity metrics from a Subsystem.
Conformance Credential

A credential that states the conformance to the TCPA specification of: the TPM; the method of
incorporation of the TPM into the platform; the RTM; and the method of incorporation of the RTM into the
platform.

Denial-of-service attack
A attack on a system (or subsystem) which has no affect on information except to prevent its use.
DES

Symmetric key encryption using a key size of 56 bits defined by NIST as FIPS 46-3. Reference
http://csrc.ncsl.nist.gov/cryptval/des.htm.

Endorsement Credential
A credential containing a public key (the endorsement public key) that was generated by a genuine TPM.
Endorsement Key

A term used ambiguously, depending on context, to mean a pair of keys, or the public key of that pair, or
the private key of that pair; an asymmetric key pair generated by a TPM that is used as proof that a TPM
is a genuine TPM; the public endorsement key (PUBEK); the private endorsement key (PRIVEK).

Identity Credential

A credential issued by a Privacy CA that provides an identity for the TPM.
Integrity metric(s)

Values that are the results of measurements on the integrity of the platform.
Man-in-the-middle attack

An attack by an entity intercepting communications between two others without their knowledge and by
intercepting that communication is able to obtain or modify the information between them.

Migratable
A key which may be transported outside the specific TPM.
Non-Migratable

A key which cannot be transported outside a specific TPM; a key that is (statistically) unique to a
particular TPM.

Non-Volatile
Storage location or memory that retain their values after power-off or a TPM_Init function.
Owner

The entity that owns the platform in which a TPM is installed. Since there is, by definition, a one-to-one
relationship between the TPM and the platform, the Owner is also the Owner of the TPM. The Owner of

Version 1.0 25 January, 2001

TCPA Main Specification Page 283

the platform is not necessarily the “user” of the platform (e.g., in a corporation, the Owner of the platform
might be the IT department while the user is an employee.) The Owner has administration rights over the
TPM.

PKI Identity Protocol

The protocol used to insert anonymous identities into the TPM.

Platform Credential

A credential that states that a specific platform contains a genuine TCPA Subsystem.
POST

POST refers to the Power On Self Test performed by a PC.

Protection Profile

A document that defines all attacks and how they are resisted by the TPM, the RTM, and the methods by
which they are incorporated into the platform.

Privacy CA

An entity that issues an Identity Credential for a TPM based on trust in the entities that vouch for the TPM
via the Endorsement Credential, the Conformance Credential, and the Platform Credential.

Private Endorsement Key (PRIVEK)

The private key of the key pair that proves that a TPM is a genuine TPM. The PRIVEK is (statistically)
unique to only one TPM.

Public Endorsement Key (PUBEK)

A public key that proves that a TPM is a genuine TPM. The PUBEK is (statistically) unique to only one
TPM.

Random number generator (RNG)

A pseudo-random number generator that must be initialized with unpredictable data and provides,
“random” numbers on demand.

Root of Trust for Measurement (RTM)

The point from which all trust in the measurement process is predicated.

Root of Trust for Reporting (RTR)

The point from which all trust in reporting of measured information is predicated.
Root of Trust for Storing (RTS)

The point from which all trust in Protected Storage is predicated.

RSA

An (asymmetric) encryption method using two keys: a private key and a public key. Reference:
http://www.rsa.com .

SHA-1

A NIST defined hashing algorithm producing a 160 bit result from an arbitrary sized source as specified in
FIPS 180-1. Reference: http://csrc.ncsl.nist.gov/cryptval/shs.html.

Storage Root Key (SRK)

The root key of a hierarchy of keys associated with a TPM; generated within a TPM; a non-migratable
key.

Subsystem

Version 1.0 25 January, 2001

TCPA Main Specification Page 284

The combination of the TSS and the TPM.
Support Services (TSS)

Services to support the TPM but which do not need the protection of the TPM. The same as Trusted
Platform Support Services.

TCPA-protected capability

A function which is protected within the TPM, and has access to TPM secrets.

TPM Identity

One of the anonymous PKI identities belonging to a TPM; a TPM may have multiple identities.
TPM POST

TPM POST refers to the Power On Self Test performed by a TPM.

Trusted Platform Agent (TPA)

Trusted Platform Agent; the component within the platform that reports integrity metrics, logs, Validation
Data, etc. to a Challenger; outside the scope of this specification.

Trusted Platform Measurement Store (TPMS)
Storage locations within the Subsystem, which contain unprotected logs of measurement process.
Trusted Platform Module (TPM)

The set of functions and data that are common to all types of platform, which must be trustworthy if the
Subsystem is to be trustworthy; a logical definition in terms of protected capabilities and shielded
locations.

Trusted Platform Support Services (TSS)

The set of functions and data that are common to all types of platform, which are not required to be
trustworthy (and therefore do not need to be part of the TPM).

User

An entity that uses the platform in which a TPM is installed. The only rights that a User has over a TPM
are the rights given to the User by the Owner. These rights are expressed in the form of authorization
data, given by the Owner to the User, that permits access to entities protected by the TPM. The User of
the platform is not necessarily the “owner” of the platform (e.g., in a corporation, the owner of the platform
might be the IT department while the User is an employee). There can be multiple Users.

Validation Credential

A credential that states values of measurements that should be obtained when measuring a particular
part of the platform when the part is functioning as expected.

Validation Data

Data inside a Validation Credential; the values that the integrity measurements should produce when the
part of a platform described by the Validation Credential is working correctly.

Validation Entity

An entity that issues a Validation Certificate for a component; the manufacturer of that component; an
agent of the manufacturer of that component.

Volatile

Storage locations or memory that are either set to a predefined value (e.g.,zero) or have values that are
undefined upon completion of a power-on or TPM_Init function.

Version 1.0 25 January, 2001

